代码方面:
据说有两种方法使用word2Vec gensim应该是比较常用的
Gensim中 Word2Vec 模型的期望输入是进过分词的句子列表,即是某个二维数组
这里我们调用Word2Vec创建模型实际上会对数据执行两次迭代操作,第一轮操作会统计词频来构建内部的词典数结构,第二轮操作会进行神经网络训练,而这两个步骤是可以分步进行的,这样对于某些不可重复的流(譬如 Kafka 等流式数据中)可以手动控制:
model = gensim.models.Word2Vec(iter=1) # an empty model, no training yet
model.build_vocab(some_sentences) # can be a non-repeatable, 1-pass generator
model.train(other_sentences) # can be a non-repeatable, 1-pass generator
**
- Word2Vec 参数
**
- min_count 基准词频
- size 用来设置神经网络的层数
- workers参数用于设置并发训练时候的线程数,不过仅当Cython安装的情况下才会起作用
#通过加载训练预料,进行初始化并训练word2vec模型
from gensim.models import word2vec
sentences = word2vec.Text8Corpus("./text8")
model = word2vec.Word2Vec(sentences,size=200)
原理方面
两个模型:
总而言之就是这样的
在CBOW和skip-gram讲解完成后,我们会发现Word2Vec模型是一个超级大的神经网络(权重矩阵规模非常大)。
举个例子,我们拥有10000个单词的词汇表,我们如果想嵌入300维的词向量,那么我们的输入-隐层权重矩阵和隐层-输出层的权重矩阵都会有 10000 x 300 = 300万个权重,在如此庞大的神经网络中进行梯度下降是相当慢的。更糟糕的是,你需要大量的训练数据来调整这些权重并且避免过拟合。百万数量级的权重矩阵和亿万数量级的训练样本意味着训练这个模型将会是个灾难。
优化方法 负采样 层序softmax