Word2Vec原理+代码

本文介绍了Word2Vec的使用方法,通过Gensim库构建模型,并详细阐述了Word2Vec的两种模型——CBOW和skip-gram的工作原理。同时,讨论了在大规模词汇表下训练词向量时的优化方法,如负采样和层序softmax。
摘要由CSDN通过智能技术生成

代码方面:

据说有两种方法使用word2Vec gensim应该是比较常用的

Gensim中 Word2Vec 模型的期望输入是进过分词的句子列表,即是某个二维数组

这里我们调用Word2Vec创建模型实际上会对数据执行两次迭代操作,第一轮操作会统计词频来构建内部的词典数结构,第二轮操作会进行神经网络训练,而这两个步骤是可以分步进行的,这样对于某些不可重复的流(譬如 Kafka 等流式数据中)可以手动控制:

model = gensim.models.Word2Vec(iter=1)  # an empty model, no training yet
model.build_vocab(some_sentences)  # can be a non-repeatable, 1-pass generator
model.train(other_sentences)  # can be a non-repeatable, 1-pass generator

**

  • Word2Vec 参数

**

  • min_count 基准词频
  • size 用来设置神经网络的层数
  • workers参数用于设置并发训练时候的线程数,不过仅当Cython安装的情况下才会起作用
#通过加载训练预料,进行初始化并训练word2vec模型
from gensim.models import word2vec

sentences = word2vec.Text8Corpus("./text8")

model = word2vec.Word2Vec(sentences,size=200)

具体属性与方法的操作 介绍文档

原理方面

两个模型:

总而言之就是这样的
在这里插入图片描述
在这里插入图片描述

在CBOW和skip-gram讲解完成后,我们会发现Word2Vec模型是一个超级大的神经网络(权重矩阵规模非常大)。
举个例子,我们拥有10000个单词的词汇表,我们如果想嵌入300维的词向量,那么我们的输入-隐层权重矩阵和隐层-输出层的权重矩阵都会有 10000 x 300 = 300万个权重,在如此庞大的神经网络中进行梯度下降是相当慢的。更糟糕的是,你需要大量的训练数据来调整这些权重并且避免过拟合。百万数量级的权重矩阵和亿万数量级的训练样本意味着训练这个模型将会是个灾难。
优化方法 负采样 层序softmax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值