Datawhale~零基础CV入门~Day03【字符识别模型】

这一节主要学习CNN模型的基本内容,并且学会使用CNN模型来处理数据

CNN

CNN,卷积神经网络,用于特征提取,在CV、分类、检索、医学检测等方面都很有效。一个简单的CNN包括输入层,卷积层,池化层,全连接层和输出层,将处理好的数据传入输入层,然后通过卷积层的卷积核进行特征提取,再通过池化层给数据降维,最后通过全连接层对数据进行分类。一般的参数包括卷积核的大小、滑动窗口的步长(stride)、边缘填充(padding)以及卷积核的个数。

一般的处理流程:输入层–>卷积层–>池化层–>全连接层–>输出层

  • 卷积层计算:
    在这里插入图片描述

  • 池化层:没有任何的矩阵运算,仅仅对矩阵进行压缩操作,包括最大池化,平均池化。比如最大池化通过22的filter,即以22为单位,将原图像中的最大值输出(最优的特征),生成比原图像缩小一倍的图。平均池化会削弱最优的特征。
    在这里插入图片描述

  • 边缘填充:为了防止外层位置被用次数少于内层的信息,导致外层的特征利用率降低,容易丢失外层的信息,所以可以通过外层边缘加一圈0的方式对数据进行处理。

  • 激活函数:在神经网络的训练过程中,使用激活函数作为非线性因素对生成的结果进行处理,可以达到更好的效果。如果每一层仅仅是向量的线性操作,那么多层相当于一层,这样的深度学习是没有意义的。即线性函数训练的两层: W 2 ( W 1 ∗ X + b 1 ) + b 2 W_2(W_1*X+b_1)+b_2 W2(W1X+b1)+b2运算之后其实还是线性函数,而非线性函数的运算效果: W 2 ( a c t i v a t i o n ( ( W 1 ∗ X + b 1 ) ) + b 2 W_2(activation((W_1*X+b_1))+b_2 W2(activation((W1X+b1))+b2。ReLU线性整流函数, f ( X ) = m a x ( X , 0 ) f(X)=max(X,0) f(X)=max(X,0)。Relu函数作为激活函数,有下面几大优势:

    • 速度快 和sigmoid函数需要计算指数和倒数相比,relu函数其实就是一个max(0,x),计算代价小很多。
    • 减轻梯度消失问题 回忆一下计算梯度的公式 ∇ = σ ′ δ x \nabla=\sigma'\delta x =σδx。其中, σ ′ \sigma' σ是sigmoid函数的导数。在使用反向传播算法进行梯度计算时,每经过一层sigmoid神经元,梯度就要乘上一个 σ ′ \sigma' σ。从下图可以看出, σ ′ \sigma' σ函数最大值是1/4。因此,乘一个 σ ′ \sigma' σ会导致梯度越来越小,这对于深层网络的训练是个很大的问题。而relu函数的导数是1,不会导致梯度变小。当然,激活函数仅仅是导致梯度减小的一个因素,但无论如何在这方面relu的表现强于sigmoid。使用relu激活函数可以让你训练更深的网络。
      在这里插入图片描述
    • 稀疏性 通过对大脑的研究发现,大脑在工作的时候只有大约5%的神经元是激活的,而采用sigmoid激活函数的人工神经网络,其激活率大约是50%。有论文声称人工神经网络在15%-30%的激活率时是比较理想的。因为relu函数在输入小于0时是完全不激活的,因此可以获得一个更低的激活率。
      softmax激活函数一般应用于分类任务的最后一层(全连接层),将上一层的数据映射成[0,1]之间的概率值,选取最大的概率值对应的label即为该样本对应的label。计算公式: p i = e i / ∑ j e j p_i=e^i/\sum_j e^j pi=ei/jej
神经网络发展历程
pytorch
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True

import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

# 定义模型
class SVHN_Model(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
        # CNN提取特征模块
        self.cnn = nn.Sequential(
            nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(),  
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),
            nn.ReLU(), 
            nn.MaxPool2d(2),
        )
        # 
        self.fc1 = nn.Linear(32*3*7, 11)
        self.fc2 = nn.Linear(32*3*7, 11)
        self.fc3 = nn.Linear(32*3*7, 11)
        self.fc4 = nn.Linear(32*3*7, 11)
        self.fc5 = nn.Linear(32*3*7, 11)
        self.fc6 = nn.Linear(32*3*7, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        c6 = self.fc6(feat)
        return c1, c2, c3, c4, c5, c6
    
model = SVHN_Model()
在对图像数据进行训练的任务中,该baseline采用了resnet网络:
class SVHN_Model1(nn.Module):
    def __init__(self):
        super(SVHN_Model1, self).__init__()
                
        model_conv = models.resnet18(pretrained=True)
        model_conv.avgpool = nn.AdaptiveAvgPool2d(1)
        model_conv = nn.Sequential(*list(model_conv.children())[:-1])
        self.cnn = model_conv
        
        self.fc1 = nn.Linear(512, 11)
        self.fc2 = nn.Linear(512, 11)
        self.fc3 = nn.Linear(512, 11)
        self.fc4 = nn.Linear(512, 11)
        self.fc5 = nn.Linear(512, 11)
    
    def forward(self, img):        
        feat = self.cnn(img)
        # print(feat.shape)
        feat = feat.view(feat.shape[0], -1)
        c1 = self.fc1(feat)
        c2 = self.fc2(feat)
        c3 = self.fc3(feat)
        c4 = self.fc4(feat)
        c5 = self.fc5(feat)
        return c1, c2, c3, c4, c5

参考:https://www.jianshu.com/p/70b6f5653ac6

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值