文章目录
CNN卷积神经网络之LeNet-5原理与实战
1、LeNet-5网络结构:
1.1、LeNet-5由两个部分组成:
(1)特征提取部分:由两个卷积层和两个平均池化层组成;
(2)全连接层:由三个全连接层组成;
1.2、模型单元结构:
一个卷积层;一个sigmoid激活函数;一个池化层;
1.3、数据的传输:
(1)卷积层输入为4维的数据(B,C,W,H)、卷积层输出为4维的数据(B,FN,OW,OH);
(2)全连接层的输入为2维数据(B,L)、全连接层的输出为2维数据(B,FL);
B:Batch size(批次大小),表示一次处理的样本数量;
C:Channels(通道数),对于彩色图像通常是3,对于灰度图像则是1,对于卷积神经网络(CNN)中的特征图,通