CNN卷积神经网络之LeNet-5原理与实战

CNN卷积神经网络之LeNet-5原理与实战
1、LeNet-5网络结构:

在这里插入图片描述

1.1、LeNet-5由两个部分组成:

(1)特征提取部分:由两个卷积层和两个平均池化层组成;
(2)全连接层:由三个全连接层组成;

1.2、模型单元结构:

一个卷积层;一个sigmoid激活函数;一个池化层;

1.3、数据的传输:

(1)卷积层输入为4维的数据(B,C,W,H)、卷积层输出为4维的数据(B,FN,OW,OH);
(2)全连接层的输入为2维数据(B,L)、全连接层的输出为2维数据(B,FL);

B:Batch size(批次大小),表示一次处理的样本数量;

C:Channels(通道数),对于彩色图像通常是3,对于灰度图像则是1,对于卷积神经网络(CNN)中的特征图,通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值