prophet outliers异常值

本文探讨了异常值如何影响Prophet的时间序列预测模型,包括趋势预测的合理性及不确定性区间的宽度。通过实例展示了异常值对预测结果的影响,并提供了处理异常值的有效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

例子代码

https://github.com/lilihongjava/prophet_demo/tree/master/outliers

# encoding: utf-8
"""
@author: lee
@time: 2019/8/8 9:35
@file: main.py
@desc: 
"""
from fbprophet import Prophet
import pandas as pd


def main():
    df = pd.read_csv('./data/example_wp_log_R_outliers1.csv')
    m = Prophet()
    m.fit(df)
    future = m.make_future_dataframe(periods=1096)
    forecast = m.predict(future)
    fig = m.plot(forecast)
    fig.show()

    df.loc[(df['ds'] > '2010-01-01') & (df['ds'] < '2011-01-01'), 'y'] = None
    model = Prophet().fit(df)
    fig = model.plot(model.predict(future))
    fig.show()

    df = pd.read_csv('./data/example_wp_log_R_outliers2.csv')
    m = Prophet()
    m.fit(df)
    future = m.make_future_dataframe(periods=1096)
    forecast = m.predict(future)
    fig = m.plot(forecast)
    fig.show()

    df.loc[(df['ds'] > '2015-06-01') & (df['ds'] < '2015-06-30'), 'y'] = None
    m = Prophet().fit(df)
    fig = m.plot(m.predict(future))
    fig.show()


if __name__ == "__main__":
    main()

异常值有两种主要方式可以影响prophet的预测。以下,我们对之前例子中记录维基百科中R语言页面访问数的数据进行预测,但是我们造了一段问题数据(2010-01到2010-05都是5,2010-06到2011-01都是8,2010-06-01为6.76272950693188):

df = pd.read_csv('./data/example_wp_log_R_outliers1.csv')
m = Prophet()
m.fit(df)
future = m.make_future_dataframe(periods=1096)
forecast = m.predict(future)
fig = m.plot(forecast)

趋势预测看似合理,但不确定性区间似乎过于宽泛。Prophet能够处理历史数据中的异常值,但只能通过趋势变化来拟合它们。不确定性模型预计未来趋势变化的幅度与历史是相似的。

处理异常值的最佳方法是删除它们 - prophet对丢失数据是不影响的。如果将历史数据的值设置NA为但在future里保留对应的日期,则Prophet将能提供其值的预测。

df.loc[(df['ds'] > '2010-01-01') & (df['ds'] < '2011-01-01'), 'y'] = None
model = Prophet().fit(df)
fig = model.plot(model.predict(future))

在上面的例子中,异常值扰乱了不确定性估计,但没有影响预测值yhat。情况并非总是如此,例如在以下示例中添加了异常值:

df = pd.read_csv('./data/example_wp_log_R_outliers2.csv')
m = Prophet()
m.fit(df)
future = m.make_future_dataframe(periods=1096)
forecast = m.predict(future)
fig = m.plot(forecast)

 

此例中,在2015年6月造了一组极端异常值的数据来扰乱季节性估计,因此它们将影响到预测的值。和上个例子一样,正确的方法是删除它们:

df.loc[(df['ds'] > '2015-06-01') & (df['ds'] < '2015-06-30'), 'y'] = None
m = Prophet().fit(df)
fig = m.plot(m.predict(future))

 

 

 

参考资料:

https://facebook.github.io/prophet/docs/outliers.html 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程小泓哥

你的鼓励是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值