商家跑路城市拥堵大数据论文代码开源

原始数据:

日期名称类型所属区拥挤指数速度客流指数
20240405世界之花假日广场购物;购物中心大兴区2.46621.369.49
20240405华润·五彩城购物;购物中心海淀区2.01329.7111.17
20240405北京市百货大楼购物;购物中心东城区1.85615.938.23
20240405apm购物;购物中心东城区1.8516.0510.32
20240405万达广场(北京丰台西铁营店)购物;购物中心丰台区1.71931.329.86
20240405悠唐购物中心购物;购物中心朝阳区1.64123.937.28
20240405世纪金源购物中心购物;购物中心海淀区1.61828.5628.21
20240405燕莎奥特莱斯购物中心(北京店)购物;购物中心朝阳区1.58128.98.76
20240405三里屯太古里购物;购物中心朝阳区1.53628.477.79
20240405北京SKP购物;购物中心朝阳区1.51530.867.87
``

效果图:
在这里插入图片描述

交通健康数据分析与可视化全过程:保姆级教学

在现代城市生活中,交通健康是一个重要的议题,它关系到人们的出行效率和生活质量。通过对交通数据的分析和可视化,我们可以更好地理解交通状况,为城市规划和政策制定提供支持。本文将详细介绍如何从数据收集、分析到可视化的全过程,以上述表格中的购物中心交通数据为例,带你一步步掌握交通健康分析的技能。

第一步:数据收集

数据是分析的基础。我们需要收集关于交通的各种数据,包括但不限于交通流量、速度、事故率、公共交通使用情况等。在这个例子中,我们已经拥有了一组关于不同购物中心的交通数据,包括日期、名称、类型、所属区、拥挤指数、速度和客流指数。

第二步:数据清洗

在开始分析之前,我们需要确保数据的准确性和完整性。数据清洗包括去除重复值、填补缺失值、纠正错误等步骤。例如,我们需要检查上述表格中是否有重复的记录,是否有缺失的数值,以及是否有不合理的数据(如速度或客流指数异常高或低)。

第三步:数据分析

数据分析的目的是从中提取有价值的信息。我们可以使用统计方法来分析数据,例如计算平均速度、拥挤指数和客流指数,找出最繁忙和最空闲的购物中心,或者分析不同区域的交通状况。

描述性统计

首先,我们可以计算每个指标的平均值、中位数、标准差等,来了解数据的基本情况。

相关性分析

接下来,我们可以用相关性分析来探究不同指标之间的关系。例如,拥挤指数和客流指数之间是否存在正相关?速度是否与拥挤指数负相关?

第四步:数据可视化

数据可视化是将分析结果以图形的形式展现出来,使得信息更加直观易懂。我们可以使用各种图表,如柱状图、折线图、散点图等,来展示我们的分析结果。

柱状图

我们可以用柱状图来展示不同购物中心的拥挤指数和客流指数,这样可以直观地比较它们的交通状况。

折线图

折线图可以用来展示时间序列数据。例如,我们可以绘制一天中不同时间点的交通速度变化图,来分析交通状况的日变化规律。

散点图

散点图可以用来展示两个变量之间的关系。例如,我们可以在散点图上展示拥挤指数与客流指数的关系。

第五步:结果解释与应用

最后一步是将我们的分析结果解释给相关利益方,如城市规划者、交通管理部门等,并提出可能的改进建议。例如,如果某个购物中心的交通状况特别拥挤,我们可能建议增加公共交通服务,或者改善道路设施。

结语

通过上述步骤,我们不仅学会了如何进行交通健康数据分析与可视化,还能够将这些技能应用到实际问题中,为改善城市交通状况做出贡献。记住,数据分析是一个迭代的过程,我们可以根据反馈不断优化我们的分析方法和可视化效果。

class tools:
    def analysis(self ,csv_file_path )  :
        import pandas as pd
        print("数据分析:")
        # 步骤1: 读取CSV文件

        df = pd.read_csv(csv_file_path)

        # 步骤2: 检查并处理缺失值
        # 检查数据中是否有缺失值
        print("Missing values before:")
        print(df.isnull().sum())

        # 删除含有缺失值的行
        df.dropna(inplace=True)

        # 再次检查是否有缺失值
        print("\nMissing values after:")
        print(df.isnull().sum())

        # 步骤3: 检查并处理重复值
        # 检查数据中是否有重复值
        print("\nDuplicate rows before:")
        print(df.duplicated().sum())

        # 删除重复的行
        df.drop_duplicates(inplace=True)

        # 再次检查是否有重复值
        print("\nDuplicate rows after:")
        print(df.duplicated().sum())

        # 步骤4: 对拥挤指数进行排序,并找出前五个最拥挤的购物中心
        # 将拥挤指数列转换为数值类型,以便进行数学运算和排序
        df['拥挤指数'] = pd.to_numeric(df['拥挤指数'], errors='coerce')

        # 对拥挤指数进行降序排序
        sorted_df = df.sort_values(by='拥挤指数', ascending=False)

        # 获取前五个最拥挤的购物中心
        top_five_crowded_malls = sorted_df.head(5)

        # 打印结果
        print("\nTop 5 most crowded shopping malls:")
        print(top_five_crowded_malls[['名称', '所属区', '拥挤指数', '速度', '客流指数']])
        square = top_five_crowded_malls[['名称', '所属区', '拥挤指数', '速度', '客流指数']]['名称'].values.tolist()
        value = top_five_crowded_malls[['名称', '所属区', '拥挤指数', '速度', '客流指数']]['拥挤指数'].values.tolist()
        return square,value



    def Visualization(self,x,y):
        from pyecharts.charts import Bar
        from pyecharts import options as opts
        print("数据可视化生成完毕")

   
        Bar: 柱状图对象。
        """
        # 创建柱状图对象
        bar = bar()

        # 添加 X 轴数据和 Y 轴数据
        bar.add_xaxis(x)
        bar.add_yaxis("拥挤指数", y)

        # 设置全局配置项
        bar.set_global_opts(
            title_opts=opts.TitleOpts(title="title"),  # 设置图表标题
            xaxis_opts=opts.AxisOpts(type_="category", name="广场"),  # 设置 X 轴为类目轴并添加标签
            yaxis_opts=opts.AxisOpts(name='拥挤值'),  # 设置 Y 轴标签
        )
 

        # 返回柱状图对象
        return bar
        
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值