Python:实现"调和级数"算法——让你了解更多数学算法
调和级数是一种非常基本的数学级数,它是指1+1/2+1/3+…+1/n这样的级数。尽管这个级数看起来很简单,但它却有着非常有趣的性质。在本篇文章中,我们将探讨调和级数的性质,并提供Python语言的代码实现。
调和级数的性质
调和级数是一个发散的级数,也就是说,对于任何正整数n,1+1/2+1/3+…+1/n都会无限逼近于正无穷大。这个级数的性质非常有趣,因为在实际应用中,调和级数经常出现在各种物理、工程、经济等方面的问题中。
具体来说,在物理学中,调和级数是描述声音、光线等波动的传输规律的基本工具;在工程学中,通过调和级数可以描述材料的弹性模量等性质;在经济学中,调和级数也用于计算一些金融数据(例如复利)等等。
Python语言实现调和级数算法
接下来,我们将给出Python语言的调和级数的实现代码,代码中的参数n表示要计算的级数的项数。请注意,当n很大时,这个算法的执行效率会非常低。
def harmonic_series(n):
s = 0
for i in range(1, n+1):
s += 1/i
return s
print(harmo