There are three types of Naïve Bayes classifiers. When handling real-time data with continuous distribution, Naïve Bayes classifier considers that the big data is generated through a Gaussian process with normal distribution. Multinomial Naïve Bayes classifier can be applied when handling event models where the events are modeled through a multinomial distribution. In this situation, the features are frequencies. In the third scenario, when the features are Boolean or independent, the features are generated through a Bernoullian process. In this scenario, a Bernoulli Naïve Bayes classifier can be applied.