uva 437 The Tower of Babylon


第一次写dp的题目,感觉代码写的很拙劣,虽然一次就AC了。

思路是DAG上的有向无环最长路,用h存放高度,然后往下所搜索就可以了。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node{
    int x,y,z;
}node[100];
int n;
int G[200][200];
int h[200];
int vis[200];
int k;
int dp(int i)
{
    if(vis[i]) return h[i];
    vis[i]=1;
    for(int j=0;j<k;j++)
        if(G[i][j]) {h[i]=max(h[i],dp(j)+node[i].z);}
    return h[i];
}
int main()
{
    int kase=0;
    while(cin>>n&&n)
    {
        memset(G,0,sizeof(G));
        memset(vis,0,sizeof(vis));
        int a,b,c;
        k=0;
        int p=n;
        while(p--)
        {
            cin>>a>>b>>c;
            node[k].x=a;node[k].y=b;node[k].z=c;h[k]=c; k++;
            if(c!=b) {node[k].x=a;node[k].y=c;node[k].z=b;h[k]=b; k++;}
            if(a!=b) {node[k].x=b;node[k].y=a;node[k].z=c;h[k]=c; k++;}
            if(a!=b&&a!=c) {node[k].x=b;node[k].y=c;node[k].z=a;h[k]=a; k++;}
            if(c!=a) {node[k].x=c;node[k].y=b;node[k].z=a;h[k]=a; k++;}
            if(c!=a&&a!=b) {node[k].x=c;node[k].y=a;node[k].z=b;h[k]=b; k++;}
        }
        for(int i=0;i<k;i++)
        {
            for(int j=0;j<k;j++)
            {
                if(node[i].x<node[j].x&&node[i].y<node[j].y) G[i][j]=1;
            }
        }
        cout<<"Case "<<++kase<<": maximum height = ";
        int ans=0;
        for(int i=0;i<k;i++) ans=max(ans,dp(i));
        cout<<ans<<endl;
    }
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值