nlp自然语言处理面试题

本文主要探讨word2vec的原理,包括CBOW和skip-gram模型,以及优化方法如负采样和Hierarchical SoftMax。此外,提到了一些自然语言处理的面试题目,如LightGBM与XGBoost的区别,DEEP&WIDE模型,以及词性标注、分词工具jieba的使用等。
摘要由CSDN通过智能技术生成

1、word2vec的原理

word2vec是一个把词语转化为对应向量的形式。word2vec中建模并不是最终的目的,其目的是获取建模的参数,这个过程称为fake task。

有两种实现方法:连续词袋模型CBOW和skip-gram

 

连续词袋模型CBOW

在上下文已知的条件下计算当前单词出现的概率,最大化这个概率

公式:\large P=\prod p(wt|content(wt);theta),t=0,1,2.....m,m为文本的单词数

转化为求对数的形式:\large J=\sum \log p(wt|content(wt);theta)

content(wt)是将上下文单词的综合作为输入。

 

skip-gram模型

已知当前单词,求上下文单词出现的概率,最大化这个概率

公式:

\large P=\prod \prod p(wt+j|wt;theta)

转化成求对数的形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值