题目背景
none!
题目描述
由于人类对自然资源的消耗,人们意识到大约在 2300 年之后,地球就不能再居住了。于是在月球上建立了新的绿地,以便在需要时移民。令人意想不到的是,2177 年冬由于未知的原因,地球环境发生了连锁崩溃,人类必须在最短的时间内迁往月球。
现有 n 个太空站位于地球与月球之间,且有 m 艘公共交通太空船在其间来回穿梭。每个太空站可容纳无限多的人,而每艘太空船 i 只可容纳 H[i]个人。每艘太空船将周期性地停靠一系列的太空站,例如:(1,3,4)表示该太空船将周期性地停靠太空站 134134134…。每一艘太空船从一个太空站驶往任一太空站耗时均为 1。人们只能在太空船停靠太空站(或月球、地球)时上、下船。
初始时所有人全在地球上,太空船全在初始站。试设计一个算法,找出让所有人尽快地全部转移到月球上的运输方案。
对于给定的太空船的信息,找到让所有人尽快地全部转移到月球上的运输方案。
输入格式
第 1 行有 3 个正整数 n(太空站个数),m(太空船个数)和 k(需要运送的地球上的人的个数)。其中 n<=13 m<=20, 1<=k<=50。
接下来的 m 行给出太空船的信息。第 i+1 行说明太空船 pi。第 1 个数表示 pi 可容纳的人数 Hpi;第 2 个数表示 pi 一个周期停靠的太空站个数 r,1<=r<=n+2;随后 r 个数是停靠的太空站的编号(Si1,Si2,…,Sir),地球用 0 表示,月球用-1 表示。
时刻 0 时,所有太空船都在初始站,然后开始运行。在时刻 1,2,3…等正点时刻各艘太空船停靠相应的太空站。人只有在 0,1,2…等正点时刻才能上下太空船。
输出格式
程序运行结束时,将全部人员安全转移所需的时间输出。如果问题
无解,则输出 0。
输入输出样例
输入 #1复制
2 2 1 1 3 0 1 2 1 3 1 2 -1
输出 #1复制
5
说明/提示
none!
本蒟蒻调试了半天一直死循环以为是自己的板子有问题 后来发现是T开得太大了QAQ
题解稍后补上
先放代码
#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<stack>
#include<stdio.h>
const int maxn = 1e4 + 10;
const int inf = 0x3f3f3f;
int head[maxn];
int dft[maxn];
int cur[maxn];
int tot;
int n, m, S, T, k;
using namespace std;
struct node{
int to;
int next;
int w;
node() {}
node(int a, int b, int c) : to(a), next(b), w(c) {}
}edge[maxn * 2];
struct ship{
int l;
int sum;
int d[maxn];
}sp[maxn];
void edgeadd(int a, int b, int c){
edge[tot] = node(b, head[a], c);
head[a] = tot++;
edge[tot] = node(a, head[b], 0);
head[b] = tot++;
}
int bfs(int s, int e){
queue<int> q;
memset(dft, 0, sizeof(dft));
q.push(s);
dft[s] = 1;
while(!q.empty()){
int nw = q.front();
q.pop();
for(int i = head[nw]; i != -1; i = edge[i].next){
int w = edge[i].w;
int v = edge[i].to;
if(w <= 0 || dft[v]) continue;
dft[v] = dft[nw] + 1;
q.push(v);
}
}
return dft[e];
}
int dfs(int s, int e, int f){
if(s == e || !f) return f;
int ans = 0;
for(int i = head[s]; i != -1; i = edge[i].next){
int v = edge[i].to;
int w = edge[i].w;
//cur[s] = i;
if(dft[v] != dft[s] + 1 || w <= 0)
continue;
int we = dfs(v, e, min(w, f - ans));//由于多次增广, 不能为f
edge[i].w -= we;
edge[i ^ 1].w += we;
ans += we;
}
if(!ans) dft[s] = -1;
return ans;
}
void init(){
memset(head, -1, sizeof(head));
tot = 0;
}
int dinic(int s, int e){
int cnt = 0;
while(bfs(s, e)){
/*for(int i = 0; i <= n; i++){
cur[i] = head[i];
} */
cnt += dfs(s, e, inf);
}
return cnt;
}
int main(){
ios::sync_with_stdio(false);
cin >> n >> m >> k;
n += 2;
S = 0;
T = 1200;
init();
for(int i = 1; i <= m; i++){
cin >> sp[i].l >> sp[i].sum;
for(int j = 0; j < sp[i].sum; j++){
cin >> sp[i].d[j];
sp[i].d[j] += 2;
}
}
int day = 0;
int sum = 0;
while(day <= 500){
edgeadd(S, n * day + 2, inf);
edgeadd(n * day + 1, T, inf);
if(day){
for(int i = 1; i <= n; i++)
edgeadd( n * (day - 1) + i, n * day + i, inf);
for(int i = 1; i <= m; i++){
int x = sp[i].d[(day - 1) % sp[i].sum];
int y = sp[i].d[day % sp[i].sum];
edgeadd(n * (day - 1) + x, n * day + y, sp[i].l);
}
}
sum += dinic(S, T);
//cout << sum << endl;
if(sum >= k){
cout << day << endl;
return 0;
}
day++;
}
cout << "0" <<endl;
return 0;
}