http://codeforces.com/problemset/problem/690/F1
Heidi has finally found the mythical Tree of Life – a legendary combinatorial structure which is said to contain a prophecy crucially needed to defeat the undead armies.
On the surface, the Tree of Life is just a regular undirected tree well-known from computer science. This means that it is a collection of npoints (called vertices), some of which are connected using n - 1 line segments (edges) so that each pair of vertices is connected by apath (a sequence of one or more edges).
To decipher the prophecy, Heidi needs to perform a number of steps. The first is counting the number of lifelines in the tree – these are paths of length 2, i.e., consisting of two edges. Help her!
The first line of the input contains a single integer n – the number of vertices in the tree (1 ≤ n ≤ 10000). The vertices are labeled with the numbers from 1 to n. Then n - 1 lines follow, each describing one edge using two space-separated numbers a b – the labels of the vertices connected by the edge (1 ≤ a < b ≤ n). It is guaranteed that the input represents a tree.
Print one integer – the number of lifelines in the tree.
4 1 2 1 3 1 4
3
5 1 2 2 3 3 4 3 5
4
In the second sample, there are four lifelines: paths between vertices 1 and 3, 2 and 4, 2 and 5, and 4 and 5.
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
const int maxn=1e4+5;
vector<int> G[maxn];
int visited[maxn];
int n;
int ans;
void dfs(int u,int deep)
{
visited[u]=1;
if(deep==2){
ans++;
return;
}
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(!visited[v]){
dfs(v,deep+1);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++){
int a,b;
scanf("%d%d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
ans=0;
for(int i=1;i<=n;i++){
memset(visited,0,sizeof(visited));
dfs(i,0);
}
printf("%d",ans/2);
return 0;
}