【算法】机器学习中固定随机数种子

将下列函数在程序入口执行即可,其中 torch.backends.cudnn.benchmark 设置为 False 将放弃网络模型的卷积层优化,使得运行速度大幅度下降。

def set_seed(seed=1024):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)                        # current CPU
    torch.cuda.manual_seed(seed)                   # current GPU
    torch.cuda.manual_seed_all(seed)               # all GPUs
    torch.backends.cudnn.enabled = False           # use deterministic algorithm
    torch.backends.cudnn.benchmark = False         # avoid cuDNN acceleration
    torch.backends.cudnn.deterministic = True      # use deterministic algorithm
    os.environ['PYTHONHASHSEED'] = str(seed)       # avoid hash randomization
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值