codevs 1001 舒适的路线

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_34004420/article/details/52848958

1001 舒适的路线

 

2006年

   时间限制: 2 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
题目描述 Description

Z小镇是一个景色宜人的地方,吸引来自各地的观光客来此旅游观光。
Z小镇附近共有
N(1<N≤500)个景点(编号为1,2,3,…,N),这些景点被M(0<M≤5000)条道路连接着,所有道路都是双向的,两个景点之间可能有多条道路。也许是为了保护该地的旅游资源,Z小镇有个奇怪的规定,就是对于一条给定的公路Ri,任何在该公路上行驶的车辆速度必须为Vi。频繁的改变速度使得游客们很不舒服,因此大家从一个景点前往另一个景点的时候,都希望选择行使过程中最大速度和最小速度的比尽可能小的路线,也就是所谓最舒适的路线。

输入描述 Input Description

第一行包含两个正整数,N和M。
接下来的M行每行包含三个正整数:x,y和v(1≤x,y≤N,0 最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速度比最小的路径。s和t不可能相同。

输出描述 Output Description

如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一个既约分数。

样例输入 Sample Input

样例1
4 2
1 2 1
3 4 2
1 4

样例2
3 3
1 2 10
1 2 5
2 3 8
1 3

样例3
3 2
1 2 2
2 3 4
1 3

样例输出 Sample Output

样例1
IMPOSSIBLE

样例2
5/4

样例3
2

数据范围及提示 Data Size & Hint

N(1<N≤500)

M(0<M≤5000)

Vi在int范围内

思路:刚开始一直想用SPFA搞, 可是并不会, 回来知道了正解是并查集, 不过也看到了有人用SFPA写, 两种解法有着异曲同工之妙, 枚举每一条为最大值,

找能让s与t联通的最小边, 找到就更新答案;

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
using namespace std;

const int maxn=500+10;
const int maxm=5000+10;
const int INF=0x3f3f3f3f;

struct nb{
	int x, y, v;
	bool operator < (const nb& n) const {
		return v > n.v;
	}
} G[maxm];
int n, m;
int fa[maxn];
int s, t; 
int ans_D=INF, ans_X=1;

int Find(int x)
{
	return fa[x]==x ? x : fa[x]=Find(fa[x]);
}

int gcd(int x, int y)
{
	return !y ? x : gcd(y, x%y);
}

void init()
{
	scanf("%d%d", &n, &m);
	for(int i=1; i<=m; i++) scanf("%d%d%d", &G[i].x, &G[i].y, &G[i].v);
	scanf("%d%d", &s, &t);
}

void csh()
{
	for(int i=1; i<=n; i++) fa[i]=i;
}

int main()
{
	init();
	sort(G+1, G+1+m);
	for(int i=1; i<=m; i++) {
		csh();
		bool flag=0;
		int MAX=0, MIN=INF;
		for(int j=i; j<=m; j++) {
			int a=Find(G[j].x), b=Find(G[j].y);
			if(a==b) continue;
			fa[a]=b;
			MAX=max(MAX, G[j].v);
			MIN=min(MIN, G[j].v);
			if(Find(s)==Find(t)) {
				flag=1; break;
			}
		}
		if(flag) {
			if((double)MAX/MIN < (double)ans_D/ans_X) {//此处之double()非常重要也; 不加的话, 精度就不准啦;
				ans_D=MAX; ans_X=MIN;
			}
		}
	}
	if(ans_D/ans_X==INF) printf("IMPOSSIBLE");
	else if(ans_D%ans_X==0) printf("%d", ans_D/ans_X);
	else {
		int g=gcd(ans_D, ans_X);
		printf("%d/%d", ans_D/g, ans_X/g);
	}
	return 0;
}



展开阅读全文

没有更多推荐了,返回首页