最长回文字符串——马拉车(Manacher)算法

最长回文字符串——马拉车(Manacher)算法

说来惭愧,都快要毕业了才写第一篇博客。。。

回文串

回文串呢,就是在一个字符串中,左半部分和右半部分是镜像对称的字符串,比如abcba,就是一个已c为中心点的回文串。当然,abccba也是一个回文串,所以回文串可以是奇数亦可以是偶数。

问题

怎么在一个字符串中求出最长的回文串

正常思路

我们的都会想到从左往右以每个字符为中心往这个字符的两边去拓展搜索字符串的长度,就像是abcbad=>abcbad=>abcbad。但是前面也说到了回文串也可以是偶数长度,那么就也存在从两个字符开始搜索的情况,就像是abccba=>abccba=>abccba。若字符串的长度为n,这样的解法从一个字符开始搜索需要n次,从两个字符开始搜索需要n-1次,每次搜索的长度最长为n(或者说是n/2也一样)。那么时间复杂度应该为O(n²)。我也试过用动态规划的解法但依然逃脱不了n²的时间复杂度。

怎么改进

我们这边先放一个例子

cbababce

假如我们接下来要从这个a开始搜索,我们就需要往两边一个一个字符低拓展,但能发现,这时候拓展的过程中遍历的字符,在这个’a’的前一个字符’b’的拓展过程中已经都被遍历了,这样我们就做了很多重复的操作。如果我们把前面这个’b’对应的回文串记录下来,那么我们就可以利用回文串的性质来减少重复的操作。

于是就变成了下面这样

CR
cbababce

C标记已知的,右端最靠右的回文串的中心(不是已知的最长回文串的中心),R标记这个回文串的右端。

由于是逐个搜索,我们肯定已经求得以前面所有字符为中心的最长回文串的半径

i_mirrorCiR
charcbababce
radius0012
index01234567

设当前字符a的下标为i
char[i]和char[i_mirror]关于中间字符‘b’对称,并且char[i_mirror]对应的回文串半径为1,我们以C标记的字符(b)为轴,将这个回文串翻转过去,会发现翻转过去后没有触及b这个回文串的右边界R,因此,根据回文串的对称性,我们便可以得知,以a为中心的最长回文串的半径 等于 以箭号a为中心的最长回文串的半径=1,填入结果

i_mirrorCiR
charcbababce
radius00121
index01234567

这个结果是符合拓展搜索的结果的

那么偶数长度的回文串怎么办?

我们知道奇数+偶数=偶数+奇数=奇数
如果我们在一个字符串的每个间隔以及整个字符串的两边都加上一个不可能出现在这个字符串中的符号,那么这个字符串的长度一定会变成奇数。假设这个字符为’#’,
例如:

abc=>#a#b#c# 长度为3+4=7
abcd=>#a#b#c#d# 长度为4+5=9

这样处理后我们就可以知道’#‘对应的回文串就是偶数长度的回文串(因为插在两个字符串中间)。
并且为了方便在代码中放防止越界(主要是方便省去越界的判断),在做如上处理后我们往往会在字符串的前和后继续插入两个不可能出现在原字符串中的字符,假定是’$‘和’&’,那么上面的例子就会变成

abc=>$#a#b#c#&
abcd=>$#a#b#c#d#&
上表实际上应为

i_mirrorCiR
char$#c#b#a#b#a#b#c#e#&
radius00101030703
index0123456789101112131415161718

能够直接根据镜像字符确定回文长度的条件

  1. 翻转后不能触及或超出R

由于上面的例子进行镜像翻转后没有触及到边界R,因此我们才可以直接确定char[i]对应最长回文串的radius为char[i_mirror],但如果字符串换成

i_mirrorCiR
char$#a(from)#b#a#b#a#b#a(to)#e#&
radius0010305070
index0123456789101112131415161718

翻转后左边的a(from)移动到a(to)的位置,但a(to)正好是边界R,我们能够直接判断radius[10]=radius[6]=5吗?不可以。因为我们不知道R右边的字符能不能继续满足我们的游戏规则。假如R右边的字符是’b’而不是’e’,我们却判定radius[10]=5(实际应该是7),那么我们就丢失了长度。当然,对称翻转后超出边界R也同理。

但我们肯定知道,以a为中心的最长回文串的边界至少也会到R,这时候我们就把a标记为C,然后用往两边拓展搜索的方法来更新R
由于char[4]==‘b’!=char[16]==‘e’,所以这一步的结果为

CR
char$#a(from)#b#a#b#a#b#a(to)#e#&
radius00103050705
index0123456789101112131415161718

翻转操作后是否触及或者超出R可以根据radius[i_mirror]和R-i的大小判断(radius[i_mirror]>=R-i则需要继续拓展搜索)。
2. i<R

我们要尽量使当前字符在R的左边,这样才能利用已知的右端最靠右的回文串的回文特性来减少拓展搜索步骤。因此,当i>=R的时候,我们就应该把C移动到i上,再使R=C,然后我们再继续拓展搜索,这样即使拓展的第一步就不匹配,我们也能够确保新的R>=旧的R。

参考的帖子

上面的帖子中把条件分为三个

  1. 超出了 R
  2. radius [ i_mirror ] 遇到了原字符串的左边界
  3. i 等于了 R

但是我觉得他第二个条件不是很正确,因为即便遇到的是C对应回文串的左边界,我们也应当继续去拓展,不然就会漏掉长度,因此我把他的条件1跟2归结成翻转后不能触及或超出R

为什么马拉车算法的时间复杂度为O(n)?
在下面的代码中可以看到算法中有两重循环,那为什么复杂度不是平方级的呢?我们可以注意到,算法中R总是在尽量往右边靠的,并且往右靠的步长总是等于每次做的拓展搜索的拓展次数,而当我们不需要改变R的时候我们就可以根据i_mirror直接获取所要求的radius。忽略掉其他比较,算法的耗时操作就是每一次拓展搜索的每次拓展比较,而因为R的偏移次数是处理后的字符串predealt的长度,我们就可以知道所有拓展搜索的所有拓展次数总和应∈O(n),故Manacher算法复杂度为O(n)。

还原回原字符串的下标
假设我们已求得最长回文串的中心的下标为center,radius[center]=r,由于每两个字符中间都插入了特殊字符’#’,会发现(center-r)/2就是最长回文字符串的首下标。而回文串的长度,设所求回文串有x个非’#‘字符,则’#'字符有x+1个,而回文串总长度为2r+1,则有x+x+1=2r+1 => x=r。所以长度正好为radius[center]。

C++代码:

pair<int, int> manacher(string s) {
    //对字符串的预处理
    string predealt = string();
    predealt.append("$");
    for (int i = 0; i < s.length(); i++) {
        predealt.append("#");
        predealt.append(string(1,s.at(i)));
    }
    predealt.append("#");
    predealt.append("&");


    int* radius = new int[predealt.length()];
    memset(radius, 0, predealt.length() * sizeof(int));
    int R = 0, C = 0,center=0;//center用于标记最长回文串


    for (int i = 1; i < predealt.length(); i++) {
        int  i_mirror = C - (i - C);
        //两种需要拓展搜索的情况
        if (i >= R || radius[i_mirror] >= R - i) {
            //C移动到i的位置
            C = i;
            //当前字符下标>=R
            if (i >= R) {
                //if (i > R) cout << i << endl;
                R = i;
                i_mirror =i;//关于自己对称还是自己
            }
         	//翻转后触及或超出R
            else {
                radius[i] = R - i;//边界至少到R
             }
            //往两边拓展搜索
            while (predealt[i + radius[i] + 1]  == predealt[i - radius[i] - 1] ) {
                radius[i]++;
                R++;
                //cout << R << endl;
            }
            if (radius[center] < radius[i]) center = i;
        }

        //否则直接根据镜像字符对应的回文串长度确定
        else {
            radius[i] = radius[i_mirror];
        }
        
    }
   
    //所求最长回文串在原字符串中的起始下标以及长度
    int start = (center - radius[center]) / 2, len = radius[center];
    delete[] radius;
    return pair<int, int>(start,len);

}



int main()
{
    string s("qcbcbccde");
    pair<int ,int> p=manacher(s);
    cout <<"字符串\""<<s<<"\"最长回文串的起始下标为:"<< p.first << endl<<"最长回文串的长度为:" << p.second<<endl;

}

运行结果
运行结果
如果我们把代码中//cout << R << endl;和//if (i > R) cout << i << endl;取消注释,跟踪一下R的变化
可以看到结果为
在这里插入图片描述
可以看到R的变化是符合我们预期的由1->2*s.length+3-1的(-1是因为i从1开始)。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值