Minkowski空间的共形分裂和射影分裂

本文探讨了Minkowski空间R1,1与2×2实矩阵代数的同构关系,引入了共形分裂和射影分裂的概念。通过共形分裂,Minkowski平面R1,1被唯一确定,而射影分裂提供了消除原点影响的齐次坐标方法。文章详细阐述了直线、圆、球在齐次模型中的表示,并以欧几里得几何中的Simson定理为例,展示了齐次模型在几何问题解决中的应用。" 82730352,7363969,Arduino控制舵机:理论与实践,"['Arduino开发', '硬件控制', '电子工程', '脉冲信号', '伺服电机']
摘要由CSDN通过智能技术生成

Minkowski代数 R 1 , 1 \mathbb R_{1,1} R1,1同构于 2 × 2 2\times2 2×2实矩阵代数 L 2 ( R ) L_2(R) L2(R)。一般线性群与特殊线性群与 R 1 , 1 \mathbb R_{1,1} R1,1的乘法子群的同构关系是:
{ G ∈ R 1 , 1 ∣ G ∗ G † ≠ 0 } ≅ G L 2 ( R ) \{G\in\mathbb R_{1,1}|G^*G^\dag\neq0\}\cong GL_2(R) { GR1,1GG=0}GL2(R) { G ∈ R 1 , 1 ∣ G ∗ G † = 1 } ≅ S L 2 ( R ) \{G\in\mathbb R_{1,1}|G^*G^\dag=1\}\cong SL_2(R) { GR1,1GG=1}SL2(R)

S L 2 ( R ) SL_2(R) SL2(R)群是一个三参数群,结构如下: G = K α T β U φ G=K_\alpha T_\beta U_\varphi G=KαTβUφ,其中 U φ = e φ E / 2 , K α = 1 + α e 0 = K α † , T β = 1 + β e = T β † U_\varphi=e^{\varphi E/2},K_\alpha=1+\alpha e_0=K_\alpha^\dag,T_\beta=1+\beta e=T_\beta^\dag Uφ=eφE/2,Kα=1+αe0=Kα,Tβ=1+βe=Tβ。此式的标量参数 α , β , φ \alpha,\beta,\varphi α,β,φ的定义区间是 [ − ∞ , ∞ ] [-\infty,\infty] [,],我们对此式的兴趣源于它与后面描述的保角群的关系。通篇的其余部分,我们将处理 R n + 1 , 1 \mathbb R^{n+1,1} Rn+1,1,经常分解成直和的形式: R n + 1 , 1 = R n ⊕ R 1 , 1 \mathbb R^{n+1,1}=\mathbb R^{n}\oplus\mathbb R^{1,1} Rn+1,1=RnR1,1,这种分解称为共形分裂,因为它在本质上与 R n \mathbb R^{n} Rn上的保角群有关。用黑体字表示向量在 R n \mathbb R^{n} Rn的分量是很方便的,并且使用 { e o , e } \{e_o, e\} { eo,e}表示 R 1 , 1 \mathbb R^{1,1} R1,1的空基。 R n + 1 , 1 \mathbb R^{n+1,1} Rn+1,1中的任何向量 a a a都可以分解为: a = a + α e 0 + β e a=\textbf{a}+\alpha e_0+\beta e a=a+αe0+βe

共形分裂由 R 1 , 1 \mathbb R^{1,1} R1,1的单位伪标量 E E E唯一确定。令 I I I R n + 1 , 1 \mathbb R^{n+1,1} Rn+1,1的单位伪标量,那么 E ~ = E I − 1 = − E I † \widetilde E=EI^{-1}=-EI^\dag E =EI1=EI就是 R n \mathbb R^n Rn的伪标量,并且有如下的分裂: a = P E ( a ) + P E ⊥ ( a ) a=P_E(a)+P_E^\perp(a) a=PE(a)+PE(a),其中的射影算子由下式给出: P E ( a ) = ( a ⋅ E ) E = α e 0 + β e ∈ R 1 , 1 P_E(a)=(a\cdot E)E=\alpha e_0+\beta e\in\mathbb R^{1,1} PE(a)=(aE)E=αe0+βeR1,1 P E ⊥ ( a ) = ( a ⋅ E ~ ) E ~ † = ( a ∧ E ) E = a ∈ R n P_E^\perp(a)=(a\cdot \widetilde E)\widetilde E^\dag=(a\wedge E)E=\textbf{a}\in\mathbb R^{n} PE(a)=(aE )E =(aE)E=aRn

从上面的式子可以看出,Minkowski平面 R 1 , 1 \mathbb R^{1,1} R1,1是由 E E E唯一确定的,因此称之为 E E E平面。投影 P E ⊥ P_E^\perp PE可以视为 E E E平面的排斥(rejection)。 R n \mathbb R^n Rn中的点 a \textbf{a} a用仨向量(trivector) a ∧ E a\wedge E aE来表示,这两种表示方法各有优点,但是它们对 R n \mathbb R^n Rn的表示是同构的,所以通常忽略它们之间的差别。

R n \mathbb R^n Rn中“点”的齐次坐标的基本思想是通过将 R n \mathbb R^n Rn嵌入高维空间来消除原点的影响。为做到这一点,一个有效的方法是射影分裂。令 e e e E E E平面上的向量, R n + 1 , 1 \mathbb R^{n+1,1} Rn+1,1中任意不垂直于 e e e的向量 a a a关于 e e e的射影分裂定义为: a e = a ⋅ e + a ∧ e = a ⋅ e ( 1 + a ∧ e a ⋅ e ) ae=a\cdot e+a\wedge e=a\cdot e\left(1+\dfrac{a\wedge e}{a\cdot e}\right) ae=ae+ae=ae(1+aeae)

这是用双向量 a ∧ e a ⋅ e \dfrac{a\wedge e}{a\cdot e} aeae来表示向量 a a a,这个表示方法与标量无关,因此可以采用一个特定的标量: a ⋅ e = e 0 ⋅ e = − 1 a\cdot e=e_0\cdot e=-1 ae=e0e=1,这对 a a a R n \mathbb R^n R

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值