曲面的各种“曲率”

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_34040902/article/details/78109063

假设曲面上每一个点都不是脐点:

法曲率

过曲面上的点P,可以作无数个关于曲面的法截面,每一个法截面与曲面的交线在P点的曲率,就是P的一个法曲率P点有无数个法曲率。

主曲率

P点主方向上的法曲率,就是P点的主曲率;主曲率是所有法曲率的最大值和最小值。
选择曲面的曲率线网为曲纹坐标网,给定方向d=du:dvdP点的u曲线(pv=0)的夹角是θ,那么,

cos2θ=Edu2Edu2+Fdv2
Pd方向上的法曲率是kn,有:
kn==ldu2+ndv2Edu2+Fdv2=leEdu2Edu2+Fdv2+ngGdv2Edu2+Fdv2=k1cos2θ+k2sin2θ

主曲率的计算公式

(EGF2)k2(lg+ne2mf)k+(LNM2)=0

Gauss曲率

K=k1k2=lnM2egF2

平均曲率

H=k1+k22=lgne+2MF2(EGF2)

应用

椭圆点上的主曲率k1k2同号,说明各个方向的法曲率都与k1k2同号,所以说椭圆点附近,各个方向的曲面都向同一个方向弯曲。
双曲点上的主曲率k1k2异号,那么双曲点附近的曲面就是一个“马鞍面”。
抛物点上的主曲率k1k2有一个等于0。

展开阅读全文

没有更多推荐了,返回首页