对于直角三角形: 其斜边上的中线是斜边长度的一半。
反过来:某边上的中线是该边长一半,则一定是直角三角形。
下图所示:
【练习题目1】在正方形ABCD中,P是BC上一点,AP的垂直平分线为MN,MN与BD交于F。下图所示:求证EF = ME + FN
分析方法1:要证明:EF = ME + FN 相当于 要证明: EF = MN/2; 先大胆假设:AP=MN.则
转换成:EF = AP/2, 转换成要证明三角形AFP为直角三角形。
证明过程:
按照下图,设两个角度分别为a,b。因
1. (AB=BC; BF为公共线;另外两个45度角)所以三角形AFB 与CFB全等。
2. 由MN为AP的垂直平分线,所以AF=FP。
所以各个角度如下图所示: 对于P点: 90-a+b-a+b=180 =>
2(b-a)=90度 => <AFP=90度 => EF = AP / 2.
又因为下图三角形ABP与MNM’全等, 所以AP=MN
所以EF = 2MN/2. 证明结束。
分析方法2:做AM关于AP的对称线AN'.这样显然: ME= EN'
只要证明 N'F = FN即可。
按照下图:只要证明 三角形FND 与三角形 FN'D'全等即可。 目前很明显有2个角已经相等,只要找一个边相等即可。比如DN=D'N' ,怎么证明?
DN = AM - MM' .
因MM' = BP = D'P'; AM= AN' = N'P 带入上面式子
DN = AM - MM' = N'P - D'P' = N'D' 证明结束。