初2数学-1.勾股定理

复习勾股定理:

1.   a^{2}+b^{2}=c^{2};          

2.   a^{^{2}}=c1\times c;    

3.   b^{^{2}}=c2\times c ;

 4.  h^{^{2}}=c1\times c2

后面3个式子都是根据相似三角形对应边成比例推出来的。

第4个式子来做例子: 三角形CBD与三角形 ACD相似,所以: h:c2 = c1 : h.

【例题] ABCD为菱形,边长为1.5。  做AP垂直与BC。 F为AP上一点,使得

<AFD + <BAD=180度。且EF=1, 求BE。

分析1:直角三角形中优先使用勾股定理: 1.5 * 1.5+ x * x = (1+AF)*(1+AF)

那么AF是多少?

根据三角形AFD与三角形ABE全等,可知AF=BE=x。

所以  1.5*1.5 + x*x= (1+x)(1+x)

x=5/8.

分析2:如果看不出来BE=AF,怎么办? 如果是是初三学过sin,cos的话,可以直接计算

先复习几个概念:

sin(\theta )=\frac{a}{c}=cos(90-\theta)

cos(\theta )=\frac{b}{c}=sin(90-\theta )

tg(\theta )=\frac{a}{b}=ctg(90-\theta )=\frac{sin(\theta)}{cos(\theta)}

ctg(\theta )=\frac{b}{a}=tg(90-\theta)=\frac{cos(\theta)}{sin(\theta)}

sin( \theta )^{^{2}}+cos( \theta )^{^{2}}=1

则下图所示:

AE=\sqrt{1.5^{2}+x^{2}}

在三角形ADF中:AF=1.5*ctg(\theta ),在三角形ABE中,ctg(\theta )=\frac{x}{1.5}.所以:

AF=1.5*ctg(\theta )=1.5*\frac{x}{1.5}=x

EF=1=AE-AF = 

EF = AE - AF=1 =\sqrt{1.5^{2}+x^{2}} - x

x=5/8.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_34047402

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值