一、下图所示:
若AB与A'B'平行且相等。
显然 BC = B'C' = B'E + A'D , 并且AC = A'C' = DE = DO + OE.
2.实例
例1:平行四边形ABCD内部有一个点P,连接PA,PB,PC,PD,
三角形ABP面积为27;三角形APD面积为12; 求三角形PAC面积。
【解析】
27 = 0.5 x AP x BB'
12 = 0.5x AP x DD'
上面2个式子相减:
15 = 0.5 x AP x ( BB'-DD' ) = 0.5 x AP x CC' = 三角形PAC的面积。
需要利用前面的结论(即AB与CD平行且相当,那么向AP做垂线,那么BB’=CC‘+DD')