在训练中文大模型时,选择合适的数据集至关重要。以下是一些常用于中文大数据训练的数据集:
1. 新闻数据集
新闻数据集通常涵盖广泛的领域,包括时事、财经、体育、科技等,具有实时性和高质量的特点。
- SogouCA:搜狗公司提供的新闻数据集,包含从2008年到2012年的大量新闻文本。
- THUCNews:清华大学提供的一个包含743,000篇中文新闻的语料库,分为14个类别,如体育、娱乐、家居等。
2. 社交媒体数据集
社交媒体数据集包含用户生成内容,语言富有多样性和口语化。
- Weibo数据集:包含大量来自新浪微博的用户发布的短文本,涵盖各种话题和情感。
- Douban评论数据集:包含来自豆瓣的用户评论,涵盖电影、书籍、音乐等。
3. 百科数据集
百科数据集通常是高质量的结构化文本,适合用于知识图谱和信息抽取任务。
- Wikipedia中文数据集:维基百科的中文部分,包含大量高质量的结构化文本。可以使用WikiExtractor等工具提取。
- Baike数据集:百度百科的中文数据,包含大量高质量的条目。
4. 问答与对话数据集
这些数据集包含大量的问答和对话,对自然语言理解和生成任务非常有用。
- XNLI:跨语言自然语言推理数据集,包含中文在内的15种语言,可用于跨语言理解和翻译任务。
- LCQMC:一个中文问句匹配数据集,由百度提供,包含近26万个问句对。
5. 中文维基语料
来自中文维基百科的语料,具有高质量和广泛的知识覆盖面。
- WikiQA:一个面向问题回答任务的数据集,包含从维基百科中提取的问答对。
6. 公开语料库
各大科研机构和公司发布的公开语料库,广泛应用于学术研究和工业应用中。
- 百度中文语音数据集:百度发布的中文语音数据集,可用于训练语音识别和自然语言处理模型。
- THU OpenChineseCorpus:清华大学发布的一个包含多种文本数据的公开语料库。
7. 机器翻译数据集
这些数据集包含大规模的平行语料,对机器翻译模型的训练非常有帮助。
- LDC Chinese-English Data:语言数据联盟(LDC)发布的中英双语平行语料,广泛应用于机器翻译研究。
- WMT Translation Data:WMT竞赛提供的大规模中英翻译数据集。
8. 情感分析数据集
这些数据集包含标注了情感倾向的文本,适用于情感分析和情感分类任务。
- ChnSentiCorp:一个由酒店评论、书评和其他评论组成的中文情感分析数据集。
- Weibo情感分析数据集:来自新浪微博的用户评论,标注了情感倾向。
9. 法律和医疗数据集
这些领域的数据集有助于构建法律认知和医疗诊断等专业系统。
- Chinese AI and Law Challenge Dataset:用于法律文本理解的公开数据集。
- MedQA:一个包含医疗问答对的数据集,用于医疗对话系统的训练。
示例:从中文维基百科提取数据
以下是一个示例脚本,展示如何使用Python从中文维基百科提取语料: