中文大数据训练的数据集

在训练中文大模型时,选择合适的数据集至关重要。以下是一些常用于中文大数据训练的数据集:

1. 新闻数据集

新闻数据集通常涵盖广泛的领域,包括时事、财经、体育、科技等,具有实时性和高质量的特点。

  • SogouCA:搜狗公司提供的新闻数据集,包含从2008年到2012年的大量新闻文本。
  • THUCNews:清华大学提供的一个包含743,000篇中文新闻的语料库,分为14个类别,如体育、娱乐、家居等。

2. 社交媒体数据集

社交媒体数据集包含用户生成内容,语言富有多样性和口语化。

  • Weibo数据集:包含大量来自新浪微博的用户发布的短文本,涵盖各种话题和情感。
  • Douban评论数据集:包含来自豆瓣的用户评论,涵盖电影、书籍、音乐等。

3. 百科数据集

百科数据集通常是高质量的结构化文本,适合用于知识图谱和信息抽取任务。

  • Wikipedia中文数据集:维基百科的中文部分,包含大量高质量的结构化文本。可以使用WikiExtractor等工具提取。
  • Baike数据集:百度百科的中文数据,包含大量高质量的条目。

4. 问答与对话数据集

这些数据集包含大量的问答和对话,对自然语言理解和生成任务非常有用。

  • XNLI:跨语言自然语言推理数据集,包含中文在内的15种语言,可用于跨语言理解和翻译任务。
  • LCQMC:一个中文问句匹配数据集,由百度提供,包含近26万个问句对。

5. 中文维基语料

来自中文维基百科的语料,具有高质量和广泛的知识覆盖面。

  • WikiQA:一个面向问题回答任务的数据集,包含从维基百科中提取的问答对。

6. 公开语料库

各大科研机构和公司发布的公开语料库,广泛应用于学术研究和工业应用中。

  • 百度中文语音数据集:百度发布的中文语音数据集,可用于训练语音识别和自然语言处理模型。
  • THU OpenChineseCorpus:清华大学发布的一个包含多种文本数据的公开语料库。

7. 机器翻译数据集

这些数据集包含大规模的平行语料,对机器翻译模型的训练非常有帮助。

  • LDC Chinese-English Data:语言数据联盟(LDC)发布的中英双语平行语料,广泛应用于机器翻译研究。
  • WMT Translation Data:WMT竞赛提供的大规模中英翻译数据集。

8. 情感分析数据集

这些数据集包含标注了情感倾向的文本,适用于情感分析和情感分类任务。

  • ChnSentiCorp:一个由酒店评论、书评和其他评论组成的中文情感分析数据集。
  • Weibo情感分析数据集:来自新浪微博的用户评论,标注了情感倾向。

9. 法律和医疗数据集

这些领域的数据集有助于构建法律认知和医疗诊断等专业系统。

  • Chinese AI and Law Challenge Dataset:用于法律文本理解的公开数据集。
  • MedQA:一个包含医疗问答对的数据集,用于医疗对话系统的训练。

示例:从中文维基百科提取数据

以下是一个示例脚本,展示如何使用Python从中文维基百科提取语料:


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

临水逸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值