【机器学习】—何为统计学习方法三要素?

本文探讨了统计学习方法的三大要素——模型、策略和算法。模型是指学习的假设空间,如监督学习中的条件概率分布或决策函数。策略涉及选择最优模型的标准,如经验风险最小化和结构风险最小化。算法则是实现这一选择的具体计算方法,如支持向量机的对偶算法。通过对李航《统计学习方法》的解读,文章深入浅出地解释了这三个概念在机器学习中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

阅读之前看这里👉:博主是一名正在学习的学习者(学生),在每个领域我们都应当是学生的心态,也不应该拥有身份标签来限制自己学习的范围,所以博客记录的是在学习和求职过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。
博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。

何为统计学习方法三要素?

在李航《统计学习方法中》提到了统计学习方法的三要素为:模型,策略和算法,那么何为这三要素呢,接下来我们一起来探索吧。

书中对统计学习方法的概括如下:
从给定的、有限的、用于学习的训练数据集合出发,假设数据是独立同分布产生的;(前提)
假设要学习的模型属于某个函数的集合,称为假设空间(模型)
应用某个评价准则,从假设空间中选取一个最优模型,使它对已知的训练数据及未知的测试数据在给定的评价准则下有最优的预测;(策略)
最优的选取由算法实现。(算法)

实现统计学习方法的步骤:

  1. 得到一个有限的训练数据集合;
  2. 确定包含所有可能的模
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值