机器学习
CQ_Liu
这个作者很懒,什么都没留下…
展开
-
Region Based CNN 系列之——(1) R-CNN思路及其基础整理
现在对于从RCNN到FRCNN的论文已经有了很多优秀的博客来介绍,因此在这里,我只简单写一些思路性的东西,以及为了理解所加入的一些基础知识。一、RCNN的整体结构 如上图所示,RCNN的整体结构其实相对比较简单,首先为输入图像(可以是任意尺寸),其次通过Region Proposal 获取到约2000个候选区域,然后将这2000个候选区域直接resize成固定大小...原创 2019-04-25 14:30:14 · 521 阅读 · 0 评论 -
SPP-net
参考文献:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition SPP-net的思路其实很简单,就是为了解决传统卷积神经网络在含有FC(全连接层)的时候,只能输入固定尺寸的图片的弊端。在传统带有FC的网络中,若想输入不同尺寸的图片,必须先将它们进行裁剪或resize。如何...原创 2019-04-26 11:23:00 · 219 阅读 · 0 评论 -
Region Based CNN 系列之——(2) Fast-RCNN思路及其基础整理
以R-CNN思路及其基础整理和SPP-net为基础,我们便可以很好理解Fast-RCNN。一、整体结构 Fast-RCNN的整体结构主要由这几部分组成:1.对输入图片用区域推荐算法获得2000个区域,并记录下框的坐标和索引;2.用卷积神经网络对图片进行特征提取,并且将框同样映射到特征空间(也就是对应到特征图上应该在什么位置);3.将卷积神经网络的最后一层pool层替换为...原创 2019-04-26 21:52:07 · 601 阅读 · 0 评论 -
从熵、相对熵、交叉熵到机器学习的交叉熵损失与softmax损失函数
在之前学习神经网络的时候,对于损失函数这块,一直以MSE来作为理解,后来交叉熵损失出现之后,也没有深刻地将其理解,写代码时也是直接调用库函数。现在因为读一些新的文章,发现有些看不懂了,因此将这一块知识补充起来。1、熵(Entropy) 熵的概念来源于信息论,可以代表一个事件的复杂度,或者不确定性。一个事件越是不确定性大,那么就是月复杂,所提供的信息就会越多。 举个例...原创 2019-04-28 16:18:24 · 717 阅读 · 0 评论 -
Region Based CNN 系列之——(3) Faster-RCNN思路及其基础整理
基于之前两篇博客对RCNN和Fast-RCNN的介绍,现在来理解Faster-RCNN就会觉着很简单。因为Faster-RCNN就是在Faste-RCNN的基础上,做了一些改进。一、整体结构 整个网络由两个模块组成,第一个是RPN(Region Proposal Network),代替之前用传统方法(如Selective Search)进行Region Proposal的...原创 2019-05-05 15:49:09 · 411 阅读 · 0 评论