深刻理解空间(线性空间,度量空间,赋范空间,线性赋范空间,内积空间,巴拿赫空间以及希尔伯特空间)

在我们学习矩阵理论和统计理论的时候,总是会出现“**空间”。在之前的时候对于空间理解的过程中,总是试图拿出一个具体的例子来加深自己的理解。但是这样做是不对的,因为如果说对于类似“欧几里何空间”这样的空间,跟我们生活中的三维空间极为相似,我们确实可以想象到一个具体的例子,但是对于类似“希尔伯特空间”之类的,我们很难用一个具体的实例来印证。所以,“**空间”到底是个什么东西呢?

很感谢交大王老师的公开课“数学之旅”,通俗地解释了空间到底是个什么东西。附上链接:《数学之旅》——王维克

下面我们从简单的距离空间开始,先理解空间是什么。

一、距离空间(度量空间)

从初中就开始学习“距离”的概念,我们总是想到这样一个情景:在三维坐标(空间)中有两个点(M(x_{1},y_{1},z_{1}),N(x_{2},y_{2},z_{2})),则距离:

                                 d(M,N)=((x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2})^{1/2}      (1)

而距离所组成的空间是什么?我们能够用上式来理解距离空间吗?答案是最好不要。因为距离不只有形如上式(1)的直线距离,还有航海时的球面距离,还有路径中的折线距离等等。如下图:实际中我们从A到B的距离是折线距离。

对于距离,我们分别可以这样定义:

1. d(M,N)=(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|)          折线距离

2. d(M,N)=max(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|)   最大距离

折线距离示例

既然是这样,我们应该如何去理解“距离空间”这个概念呢?为了便于理解,我们来举另外一个例子:字典中对苹果、水果的解释:

苹果双子叶植物,蔷薇科。落叶乔木。花淡红或淡紫红色。大多自花不孕,需异花授粉。果实由子房和花托发育而成。果肉清脆香甜,能帮助消化。 
水果供食用的含水分较多的植物果实的统称。为家庭或待客常用的果品。如梨﹑桃﹑苹果等。
热带水果 

 

换句话说,苹果是一个具体的东西,因此我们可以用具体的表述来描述;而水果是一个抽象的集合,因此我们描述空间的时候,只能用其通用的属性。类比起来,苹果就好像是我们说的直线距离,而距离空间就是水果。这是一个抽象的东西,因此我们用这个集合中的元素所共有的属性来定义。空间中的元素,通俗来说交空间中的点。

所以我们可以这样来定义距离空间:

设X是非空集合,对于X中任意的两个元素x与y,按某一法则都对应唯一的实数d(x,y),而且满足下述三条公理:

(1)(非负性)d(x,y)≥0,[d(x,y)=0,当且仅当x=y];

(2)(对称性)d(x,y)=d(y,x);

(3)(三角不等式)对于任意的x,y,z∈X,恒有d(x,y)≤d(x,z)+d(z,y)。

则称d(x,y)为x与y的距离,并称X是以d为距离的距离空间。

二、线性空间(向量空间)

线性空间即定义了数乘和加法的空间,就是具有线性结构的空间。 有了线性空间的概念之后,因为有数乘和加法,所以空间中可以找到一组基底(Basis)能够通过线性组合得到空间中所有的点。并且满足八项规则(交换律、结合律等)。

三、范数空间(赋范空间)

||x||R^{*}的范数,满足:

(1)(非负性)||x||\geq 0

(2) ||\alpha x||=|\alpha| ||x||

(3)(三角不等式)对于任意的x,y,z∈X,恒有d(x,y)≤d(x,z)+d(z,y)。

我们看到,如果把范数看做到原点的距离,那么范数空间,在距离空间的基础上,再加一个条件||\alpha x||=|\alpha| ||x||。(这就好像是在水果的基础上,再加一个条件:产于热带,就变成了热带水果)。也就是说,我们可以通过范数来定义距离,但是不能通过距离来定义范数d(x,y) = ||x-y||。

如:(1) ||M-N||_{2}=((x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2})^{1/2}   对应直线距离。

       (2) ||x||_{1}=(|x_{1}-x_{2}|+|y_{1}-y_{2}|+|z_{1}-z_{2}|)    对应折线距离

四、线性赋范空间、线性度量空间

线性赋范空间(和线性度量空间),即是在赋范空间(和度量空间、距离空间)的基础上,再加一个条件:线性结构。

五、内积空间

到上面为止,还不是我们所看到的空间,因为虽然范数代表了向量的长度,但是还没有角度。所以我们需要引入角度的概念,借助内积。

设K是实数域或复数域,H是K上线性空间,如果对H中任何两个向量x,y,都对应着一个数(x,y)∈K,满足条件:

1.(共轭对称性)  

2.(对第一变元的线性性)对任何x,y,z∈H及α,β∈K,有(αx+βy,z)=α(x,z)+β(y,z).

3.(正定性)对一切x∈H,有(x,x)≥0且(x,x)=0⇔x=0

到现在为止,内积空间就是我们通俗意义上所认识的空间,也叫作欧几里何空间(有限维的内积空间)。在这个空间上,我们可以提出向量的投影等运算。

六、巴拿赫空间和希尔伯特空间

说到这,我们再说一个概念,交完备性。也即是在取极限的时候,不会跑出去这个空间,就叫做空间的完备性。比如实数集是完备的,而有理数集是不完备的。有理数数列取极限可能是无理数。

赋范空间+完备性=巴拿赫空间

内积空间(无限维)+完备性=希尔伯特空间

换个角度来理解函数空间,如泰勒展开,是将f(x)表示为{{x^{n}}}的线性组合的形式;比如傅里叶展开,是将f(x)表示成无限三角函数线性组合的形式。而{{x^{n}}}或无限维的三角函数,也叫作一个函数空间的基。

七、拓扑空间

以上都是距离或者线性空间的基础上逐渐增加条件,那如果尝试减少条件呢?比如不要角度的概念,甚至不要距离的概念。比如“连续”的定义:对所有的\forall \xi >0, \exists \delta >0, |x-x_{0}|<\xi\Rightarrow |f(x)-f(x_{0})|<\delta即为连续。或者写成x_{0}\in D\subset R, f(O(x_{0},\xi )\cap D)\subset O(f(x_{0}),\delta )

换句话说,拓扑是元素X与其规则\tau合起来。所以,拓扑是弱化了的距离,能描述的范围最广泛。

举例,如果距离是水果,范数是热带水果,那么拓扑就是植物。

 

  • 83
    点赞
  • 243
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
希尔伯特空间是一个完备的内积空间,其中的内积满足线性、对称和正定性质。它通常用符号 $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ 表示,其中 $\mathcal{H}$ 是向量空间,$\langle \cdot, \cdot \rangle$ 是定义在 $\mathcal{H}$ 上的内积内积满足以下性质: 1. 线性性:对于任意 $x, y, z \in \mathcal{H}$ 和 $a, b \in \mathbb{C}$,有 $\langle ax+by, z\rangle = a\langle x, z\rangle + b\langle y, z\rangle$。 2. 对称性:对于任意 $x, y \in \mathcal{H}$,有 $\langle x, y\rangle = \overline{\langle y, x\rangle}$,其中 $\overline{\cdot}$ 表示复共轭。 3. 正定性:对于任意 $x \in \mathcal{H}$,有 $\langle x, x\rangle \geq 0$,且当且仅当 $x = \mathbf{0}$ 时,有 $\langle x, x\rangle = 0$。 希尔伯特空间的完备性意味着它是一个度量空间,即每个向量都可以被测量,并且两个向量之间的距离可以被定义。这种距离称为范数,可以通过内积来定义: $$\|x\| = \sqrt{\langle x, x\rangle}$$ 希尔伯特空间上的范数满足以下性质: 1. 正定性:对于任意 $x \in \mathcal{H}$,有 $\|x\| \geq 0$,且当且仅当 $x = \mathbf{0}$ 时,有 $\|x\| = 0$。 2. 齐次性:对于任意 $x \in \mathcal{H}$ 和 $a \in \mathbb{C}$,有 $\|ax\| = |a|\|x\|$。 3. 三角不等式:对于任意 $x, y \in \mathcal{H}$,有 $\|x+y\| \leq \|x\|+\|y\|$。 希尔伯特空间的数学解释为我们提供了一种强大的工具来研究各种数学问题。它在量子力学、信号处理、泛函分析等领域中得到了广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值