一、引言
自从DomainBed在ICLR2021上横空出世之后,Domain Generalization任务看起来好像有了相对统一的标准,后续大量论文都是基于DomainBed框架实现。由于DG的benchmarks非常多,本文将列举主要的几个数据集的下载方式,以及注意事项。
二、Datasets
1、PACS
Download Link
Ps: 打开上述链接后直接点击图片可进入google
云盘下载
@inproceedings{Li2017dg,
title={Deeper, Broader and Artier Domain Generalization},
author={Li, Da and Yang, Yongxin and Song, Yi-Zhe and Hospedales, Timothy},
booktitle={International Conference on Computer Vision},
year={2017}
}
2、 Office-Home
Download Link
Ps: 打开上述链接后找到路径可进入google
云盘下载
@inproceedings{venkateswara2017deep,
title={Deep hashing network for unsupervised domain adaptation},
author={Venkateswara, Hemanth and Eusebio, Jose and Chakraborty, Shayok and Panchanathan, Sethuraman},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5018--5027},
year={2017}
}
3、 VLCS
Download Link
Ps: 打开上述链接后找到路径可进入google
云盘下载
@INPROCEEDINGS{6751316,
author={Fang, Chen and Xu, Ye and Rockmore, Daniel N.},
booktitle={2013 IEEE International Conference on Computer Vision},
title={Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias},
year={2013},
volume={},
number={},
pages={1657-1664},
doi={10.1109/ICCV.2013.208}}
4、TerraIncognita (subset)
Download Link
Ps: 标签提取比较麻烦
@inproceedings{beery2018recognition,
title={Recognition in terra incognita},
author={Beery, Sara and Van Horn, Grant and Perona, Pietro},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={456--473},
year={2018}
}
5、DomainNet
@inproceedings{peng2019moment,
title={Moment matching for multi-source domain adaptation},
author={Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={1406--1415},
year={2019}
}