1、异常值(outliers)检测综述:定义、检测方法、影响、修正

异常值(outliers)在数据科学中至关重要,可能导致统计错误和机器学习效果下降。本文概述了异常值的定义、产生原因、影响以及检测和修正方法。异常值分为单变量和多变量,常见原因包括数据输入错误、测量误差等。异常值会影响数据分布和统计指标,常用的检测方法包括统计方法、聚类和模型检测,如箱线图、KNN和Isolation Forest。修正异常值的方法有删除、填充、平均值替换和对数转换等。
摘要由CSDN通过智能技术生成

  什么时候我们需要异常点检测算法呢?常见的有三种情况。一是在做特征工程的时候需要对异常的数据做过滤,防止对归一化等处理的结果产生影响。二是对没有标记输出的特征数据做筛选,找出异常的数据。三是对有标记输出的特征数据做二分类时,由于某些类别的训练样本非常少,类别严重不平衡,此时也可以考虑用非监督的异常点检测算法来做。

一、异常值定义

  在数据科学项目、统计分析、机器学习应用中检测异常值非常重要;

  异常值,也称离群值,是指样本中的个别值,其数值明显偏离所属样本的绝大部分观测值。

  异常值可以分成两种:单变量(Univariate) 和多变量(Multivariate)

在这里插入图片描述

二、导致异常值的原因

  两大类原因:人为原因(Non-natural) 和自然原因(Natural )。

  人为原因(Non-natural):比如常见的数据输入错误、处理错误、抽样误差等

  详细地了解各种类型的异常值:

  • 数据输入错误:人为错误,例如在数据收集、记录或输入过程中引起的错误,可能会导致数据出现异常值。例如:客户的年收入为 100,000 美元却输成1,000,000 美元。

  • 测量误差&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值