【算法题】回溯

请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。
很明显的一个回溯问题,下面代码附解析

public class Solution {
    public boolean hasPath(char[] matrix, int rows, int cols, char[] str)
    {
        //标记数组
        boolean[] visits = new boolean[matrix.length];
        for(int i = 0; i < rows; i++)    //行遍历
            for(int j = 0; j < cols; j++)   //列遍历
                if(hasPathHelper(matrix, rows, cols, str, i, j, 0, visits))
                    return true;
        return false;
    }
    //i,j为当前矩阵搜索到的位置,k为当前str[]需要判别的位置
    public boolean hasPathHelper(char[] matrix, int rows, int cols, char[] str, int i, int j, int k, boolean[] visits){
        //将i,j转化为一维坐标
        int index = i * cols + j;
        //失败判别出口,有以下几种情况:
        //matrix[index]已被访问过
        //matrix[index] != str[k]
        //以及i,j越界的时候
        if(i < 0 || j < 0 || i >= rows || j >= cols || visits[index] || str[k] != matrix[index])
            return false;
        else if(k == str.length - 1)//判别成功出口
            return true;
        else{
            //这里matrix[index]置为已访问,递归判断上下左右四个方向时候存在路径
            visits[index] = true;
            if(hasPathHelper(matrix, rows, cols, str, i - 1, j, k + 1, visits) ||
               hasPathHelper(matrix, rows, cols, str, i + 1, j, k + 1, visits) ||
               hasPathHelper(matrix, rows, cols, str, i, j - 1, k + 1, visits) ||
               hasPathHelper(matrix, rows, cols, str, i, j + 1, k + 1, visits))
                return true;
            else{//这里需要将str[k]置为未访问,因为到这里表示str[k] == matrix[k]向后搜索并未成功,需要回退到上一步
                visits[index] = false;
                return false;
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值