JAVA 关键字、敏感字 屏蔽过滤检测功能实现,不需要集成融合,不需要solr啥的 简单实用

项目里面我们要做一些关键词的判断拦截
1、要么你是为了屏蔽某些词;eg:它是一个**
2、要么你是为了校验某句话里面是否包含的有某些词;eg:关键词:妙龄少女;例句:我想找个妙龄少女做我女朋友! (谁不想?)
方法很多,比如ES ? Solr ? 好用 但是如果只是简单的项目需求,需要搭环境啥的,那就太麻烦啦!

这里有个漂亮的妙龄少女,不不不,是个简单的方式。
言归正传 上代码
SensitiveFilterService.java

package com.example.sensitivedemo.test;
 

import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
 
 
//敏感词过滤器:利用DFA算法  进行敏感词过滤
 
 
@SuppressWarnings("rawtypes")
public class SensitiveFilterService {
 
 
    private Map sensitiveWordMap = null;
 
 
    // 最小匹配规则
    public static int minMatchTYpe = 1;
 
 
    // 最大匹配规则
    public static int maxMatchType = 2;
 
 
    // 单例
    private static SensitiveFilterService instance = null;
 
 
    // 构造函数,初始化敏感词库
    private SensitiveFilterService() {
 
 
        sensitiveWordMap = new SensitiveWordInit().initKeyWord();
    }
 
 
    // 获取单例
    public static SensitiveFilterService getInstance() {
        if (null == instance) {
            instance = new SensitiveFilterService();
        }
        return instance;
    }
 
 
// 获取文字中的敏感词
 
 
    public Set<String> getSensitiveWord(String txt, int matchType) {
        Set<String> sensitiveWordList = new HashSet<String>();
 
 
        for (int i = 0; i < txt.length(); i++) {
 
 
// 判断是否包含敏感字符
            int length = CheckSensitiveWord(txt, i, matchType);
 
// 存在,加入list中
            if (length > 0) {
                sensitiveWordList.add(txt.substring(i, i + length));
 
// 减1的原因,是因为for会自增
                i = i + length - 1;
            }
        }
 
        return sensitiveWordList;
    }
// 替换敏感字字符
 
    public String replaceSensitiveWord(String txt, int matchType,
                                       String replaceChar) {
        String resultTxt = txt;
// 获取所有的敏感词
        Set<String> set = getSensitiveWord(txt, matchType);
        Iterator<String> iterator = set.iterator();
        String word = null;
        String replaceString = null;
        while (iterator.hasNext()) {
            word = iterator.next();
            replaceString = getReplaceChars(replaceChar, word.length());
            resultTxt = resultTxt.replaceAll(word, replaceString);
        }
        return resultTxt;
    }
 
 /**
     * 返回 字符串含有的拦截词  逗号隔开
     * 
     * @param txt
     * @return
     */
    public String returnSensitiveWord(String txt) {
        String resultTxt = txt;
        StringBuilder sensitiveWord = new StringBuilder("");
        // 获取所有的敏感词
        Set<String> set = getSensitiveWord(txt, 1);
        Iterator<String> iterator = set.iterator();
        String word = null;
        String replaceString = null;
        while (iterator.hasNext()) {
            String str = resultTxt;
            word = iterator.next();
            replaceString = getReplaceChars("*", word.length());
            resultTxt = resultTxt.replaceAll(word, replaceString);
            if (!resultTxt.equals(str)){
                sensitiveWord.append(word);
                sensitiveWord.append(",");
            }
        }
        return sensitiveWord.toString();
    }
    /**
     * 获取替换字符串

     * 
     * @param replaceChar
     * @param length
     * @return
     */
    private String getReplaceChars(String replaceChar, int length) {
        String resultReplace = replaceChar;
        for (int i = 1; i < length; i++) {
            resultReplace += replaceChar;
        }
 
        return resultReplace;
    }
 
  /**
     * 判断文本中包含敏感词个数
     * @param
     */
    public static boolean checkContainCount(String txt) {
        SensitiveFilterService filter = SensitiveFilterService.getInstance();
        Set<java.lang.String> hou = filter.getSensitiveWord(txt, 1);
        return hou.size() > 0;
    }
    /**
    
     * 检查文字中是否包含敏感字符,检查规则如下:<br>
     * 如果存在,则返回敏感词字符的长度,不存在返回0
     * 
     * @param txt
     * @param beginIndex
     * @param matchType
     * @return
     */
    public int CheckSensitiveWord(String txt, int beginIndex, int matchType) {
 
// 敏感词结束标识位:用于敏感词只有1位的情况
        boolean flag = false;
 
// 匹配标识数默认为0
        int matchFlag = 0;
        Map nowMap = sensitiveWordMap;
        for (int i = beginIndex; i < txt.length(); i++) {
            char word = txt.charAt(i);
// 获取指定key
            nowMap = (Map) nowMap.get(word);
 
// 存在,则判断是否为最后一个
            if (nowMap != null) {
 
// 找到相应key,匹配标识+1
                matchFlag++;
 
// 如果为最后一个匹配规则,结束循环,返回匹配标识数
                if ("1".equals(nowMap.get("isEnd"))) {
 
// 结束标志位为true
                    flag = true;
 
// 最小规则,直接返回,最大规则还需继续查找
                    if (SensitiveFilterService.minMatchTYpe == matchType) {
                        break;
                    }
                }
            }
 
 
// 不存在,直接返回
            else {
                break;
            }
        }
 
 
        if (matchFlag < 2 && !flag) { // 长度必须大于等于1,为词
            matchFlag = 0;
        }
        return matchFlag;
    }
 
 
}
 
 

SensitiveWordInit.java

package com.example.sensitivedemo.test;
 

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;
 
 
//屏蔽敏感词初始化
 
 
@SuppressWarnings({ "rawtypes", "unchecked" })
public class SensitiveWordInit {
    // 字符编码
    private String ENCODING = "UTF-8";
    // 初始化敏感字库
    public Map initKeyWord() {
// 读取敏感词库 ,存入Set中
        Set<String> wordSet = readSensitiveWordFile();
// 将敏感词库加入到HashMap中//确定有穷自动机DFA
        return addSensitiveWordToHashMap(wordSet);
    }
 
 
/**
      * 读取敏感词库,将敏感词放入HashSet中,构建一个DFA算法模型:<br> 
      * 中 = { 
      *      isEnd = 0 
      *      国 = { 
      *           isEnd = 1 
      *           人 = {isEnd = 0 
      *                民 = {isEnd = 1} 
      *                } 
      *           男  = { 
      *                  isEnd = 0 
      *                   人 = { 
      *                        isEnd = 1 
      *                       } 
      *               } 
      *           } 
      *      } 
      *  五 = { 
      *      isEnd = 0 
      *      星 = { 
      *          isEnd = 0 
      *          红 = { 
      *              isEnd = 0 
      *              旗 = { 
      *                   isEnd = 1 
      *                  } 
      *              } 
      *          } 
      *      } 
      */
 
 
    // 读取敏感词库 ,存入HashMap中
    private Set<String> readSensitiveWordFile() {
 
 
        Set<String> wordSet = null;
// app为项目地址
        /*
         * String app = System.getProperty("user.dir"); System.out.println(app);
         * URL resource = Thread.currentThread().getContextClassLoader()
         * .getResource("/"); String path = resource.getPath().substring(1);
         * System.out.println(path); File file = new File(path +
         * "censorwords.txt");
         */
 
 
//敏感词库
        File file = new File(
                "src/main/resources/static/censorwords.txt");
        try {
// 读取文件输入流
            InputStreamReader read = new InputStreamReader(new FileInputStream(
                    file), ENCODING);
 
 
// 文件是否是文件 和 是否存在
            if (file.isFile() && file.exists()) {
 
 
                wordSet = new HashSet<String>();
// StringBuffer sb = new StringBuffer();
// BufferedReader是包装类,先把字符读到缓存里,到缓存满了,再读入内存,提高了读的效率。
                BufferedReader br = new BufferedReader(read);
                String txt = null;
 
 
// 读取文件,将文件内容放入到set中
                while ((txt = br.readLine()) != null) {
                    wordSet.add(txt);
                }
 
 
                br.close();
 
 
                /*
                 * String str = sb.toString(); String[] ss = str.split(","); for
                 * (String s : ss) { wordSet.add(s); }
                 */
            }
 
 
// 关闭文件流
            read.close();
 
 
        } catch (Exception e) {
            e.printStackTrace();
        }
 
 
        return wordSet;
    }
 
 
    // 将HashSet中的敏感词,存入HashMap中
    private Map addSensitiveWordToHashMap(Set<String> wordSet) {
 
 
// 初始化敏感词容器,减少扩容操作
        Map wordMap = new HashMap(wordSet.size());
 
 
        for (String word : wordSet) {
            Map nowMap = wordMap;
            for (int i = 0; i < word.length(); i++) {
// 转换成char型
                char keyChar = word.charAt(i);
// 获取
                Object tempMap = nowMap.get(keyChar);
// 如果存在该key,直接赋值
                if (tempMap != null) {
                    nowMap = (Map) tempMap;
                }
// 不存在则,则构建一个map,同时将isEnd设置为0,因为他不是最后一个
                else {
// 设置标志位
                    Map<String, String> newMap = new HashMap<String, String>();
                    newMap.put("isEnd", "0");
// 添加到集合
                    nowMap.put(keyChar, newMap);
                    nowMap = newMap;
                }
// 最后一个
                if (i == word.length() - 1) {
                    nowMap.put("isEnd", "1");
                }
            }
        }
        return wordMap;
    }
 
 
}

写个测试类,我们测试一下!

package com.example.sensitivedemo.test;
 

public class Main {
    public static void main(String[] args) {
//需要屏蔽哪些字就在censorword.txt文档内添加即可
 
 
        SensitiveFilterService filter = SensitiveFilterService.getInstance();
		
        String txt = "xx需要进行检测的字符串xxx";
//如果需要过滤则用“”替换
//如果需要屏蔽,则用“*”替换
        String hou = filter.replaceSensitiveWord(txt, 1, "*");
        System.out.println("替换前的文字为:" + txt);
        System.out.println("替换后的文字为:" + hou);
//判断是否存在拦截词
        boolean check =  filter.checkContainCount(txt);
        System.out.println("是否存在关键词:" + check );
        //获得包含的关键词 逗号隔开
		String str =  filter.returnSensitiveWord(txt);
		System.out.println("所包含的关键词:" + str);
    }
}

关键词呢 我们就存在文件里面,文件格式如下,按照代码里面的配置,忽略马赛克位置
在这里插入图片描述
那关键词格式呢 很简单,一个词一行,不需要逗号啥的 直接换行。
此处有借鉴,万分感谢!!:https://blog.csdn.net/qq_35387940/article/details/97812790

大功告成!!!

嗯哼 我想找个妙龄少女做我女朋友!
不不不 现实让我更想成为一个大牛!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java程序源

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值