深度学习的数学-导数和偏导数

前言

本章主要记录机器学习里边比较重要且非常容易成为初学者拦路虎(没错就是博主我)的一个数学概念:导数和偏导数

正文

导数的定义

对于一个函数 f(x),其导数的定义如下:

其中 lim Δx->0,表示右侧表达式在 Δx 趋近0的时候,应该是一个什么样的结果,比如 f(x) = 3x 的导数求解过程如下

已知函数f(x) ,求其 导函数 的过程叫做求导,当导函数的值存在的时候,称为函数f(x) 可导

导数的含义及常见函数导数

导数的含义在坐标系中表现为连续函数某一点的切线(l)的斜率,当Q无线接近于P的时候,PQ的斜率就无限接近切线l的斜率

常见函数的导数公式:

  • ©’ = 0
  • (x)’ = 1
  • (x^2)’ = 2x
  • (x^3)’ = 3x^2
  • (e^x)’ = e^x
  • (e^(-x)) = - e^(-x)

导数的性质

导数具有线性的性质,即**“和的导数为导数的和,常数倍的导数为导数的常数倍”**,也就是如下图所示的公式

举个栗子,用导数的性质来求一个函数f(x) = (2 - y)^2,如果不用导数公式与式子,直接用定义 f'(x) = (f(x + Δx) - f(x))/(Δx) 的话,得算一分钟(说的就是博主本人);
但是拆分多项时候,配合性质,几乎是一眼就能看出答案,过程如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值