文章目录
前言
本章主要记录机器学习里边比较重要且非常容易成为初学者拦路虎(没错就是博主我)的一个数学概念:导数和偏导数
正文
导数的定义
对于一个函数 f(x),其导数的定义如下:
其中 lim Δx->0,表示右侧表达式在 Δx 趋近0的时候,应该是一个什么样的结果,比如 f(x) = 3x
的导数求解过程如下
已知函数f(x) ,求其 导函数 的过程叫做求导,当导函数的值存在的时候,称为函数f(x)
可导
导数的含义及常见函数导数
导数的含义在坐标系中表现为连续函数某一点的切线(l)的斜率,当Q无线接近于P的时候,PQ的斜率就无限接近切线l的斜率
常见函数的导数公式:
- ©’ = 0
- (x)’ = 1
- (x^2)’ = 2x
- (x^3)’ = 3x^2
- (e^x)’ = e^x
- (e^(-x)) = - e^(-x)
导数的性质
导数具有线性的性质,即**“和的导数为导数的和,常数倍的导数为导数的常数倍”**,也就是如下图所示的公式
举个栗子,用导数的性质来求一个函数f(x) = (2 - y)^2
,如果不用导数公式与式子,直接用定义 f'(x) = (f(x + Δx) - f(x))/(Δx)
的话,得算一分钟(说的就是博主本人);
但是拆分多项时候,配合性质,几乎是一眼就能看出答案,过程如下: