深度学习的数学-神经网络、输入层、隐藏层、输出层

排版可能更好一点的永久原文链接:深度学习的数学-神经网络、输入层、隐藏层、输出层

前言

前文中了解到,神经网络由多个神经单元组成,而本篇博客将会了解到深度学习由多个神经网络组成,并且分为 输入层、隐藏层和输出层,隐藏层涉及到的知识点最多,是本文的重点

正文

阶层型的神经网络主要结构如下图所示,通过输入层激活信号,再通过隐藏层提取特征,不同隐藏层神经单元对应不同输入层的神经单元权重和自身偏置均可能不同,输入层兴奋传递到隐藏层兴奋,最后输出层根据不同的隐藏层权重和自身偏置输出结果

一个例子

借用书中的一个例子,目标是识别一个 4 * 3 的黑白图像是0还是1,例子中输入层采用了 12 个神经节点来对应

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值