CCM DC-DC变换器建模(2): boost,传递函数,右半平面零点(RHPZ)

本文详细介绍了CCMboost转换器的建模过程,包括平均模型和交流小信号模型的建立,并探讨了右半平面零点(RHPZ)对系统性能的影响。通过KCL和KVL推导出传递函数,分析了占空比变化对输出电压瞬态响应的影响,揭示了RHPZ如何导致相位裕量恶化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


CCM boost建模和右半平面零点(RHPZ)

CCM DC-DC建模流程

经过上次buck建模,感觉这种方法还是比较方便直观的。

  1. 用受控源代替开关和二极管,获得平均模型

    • 开关:求电流的开关周期平均,等效为受控电流源

    • 二极管:求电压的开关周期平均,等效为受控电压源

  2. 受控源存在耦合项(比如占空比和电感电流D(t)*iL(t)),进行全微分后,分解成多个线性的受控源,获得交流小信号模型

  3. 根据交流小信号模型

    • 通过KCL和KVL,获得各个传递函数:输入到输出、控制(占空比)到输出
    • 通过仿真,获得开环波特图

这次再以CCM boost为例,主要看下传递函数怎么写。

image-20220410094404193

平均模型

模型

把MOS电流和二极管电压做开关周期平均:

(包含了二极管的正向压降Vd,假设为恒定值)
i M O S = D ( t ) i L ( t ) v d i o d e = − D ( t ) V o ( t ) + ( 1 − D ) V d i_{MOS} = D(t)i_L(t) \\ v_{diode} = -D(t)V_o(t) + (1-D)V_d iMOS=D(t)iL(t)vdiode=D(t)Vo(t)+(1D)Vd

对应的模型:

image-20220410094823112

验证

输入电压跳变时,开关模型和平均模型的电感电流和输出电压的暂态过程基本一致。

image-20220410095036615

交流小信号模型

模型

受控源存在耦合项,进行全微分后,分解成多个线性的受控源,获得交流小信号模型
Δ i M O S = D Δ i L ( t ) + I L Δ d ( t ) Δ v d i o d e = − ( V o − V d ) Δ d ( t ) − D Δ v o ( t ) \Delta i_{MOS} = D\Delta i_L(t) + I_L \Delta d(t) \\ \Delta v_{diode} = -(V_o-V_d) \Delta d(t) - D\Delta v_o(t) ΔiMOS=DΔiL(t)+ILΔd(t)Δvdiode=(VoVd)Δd(t)DΔvo(t)
其中,考虑二极管压降Vd,输出电压和电感电流为,
V o = V i 1 − D − V d I L = I o 1 − D = V o R L ( 1 − D ) V_o = \frac{V_i}{1-D}-V_d \\ I_L = \frac{I_o}{1-D} = \frac{V_o}{R_L(1-D)} Vo=1DViVdIL=1DIo=RL(1D)Vo

模型为:

image-20220410095657392

验证

占空比只能变化很小范围(例如10%以内),范围变大就不准确了。

例如,占空比在0.3和0.33之间跳变。开关模型和交流小信号模型的电感电流对比。

image-20220410100142449

尝试减去直流偏置后,形状是基本一致的。

image-20220410100026984

传递函数

基于交流小信号模型,用KVL和KCL写电感和电容的方程(s域):
s L i L ( s ) = v i ( s ) − ( 1 − D ) v o ( s ) + ( V o + V d ) d ( s ) s C v o ( s ) = ( 1 − D ) i L ( s ) − I L d ( s ) − v o ( s ) / R sLi_L(s) = v_i(s) - (1-D)v_o(s) + (V_o+V_d)d(s) \\ sCv_o(s) = (1-D)i_L(s) - I_L d(s) - v_o(s) / R sLiL(s)=vi(s)(1D)vo(s)+(Vo+Vd)d(s)sCvo(s)=(1D)iL(s)ILd(s)vo(s)/R
例如,求控制到输出的传递函数 v o ( s ) / d ( s ) v_o(s)/d(s) vo(s)/d(s)时,令 v i ( s ) = 0 v_i(s)=0 vi(s)=0,消去 i L ( s ) i_L(s) iL(s)

image-20220410110231781

v o ( s ) d ( s ) = ( V o + V d ) ( 1 − D ) − I L L s L C s 2 + L R s + ( 1 − D ) 2 = V i − I L L s L C s 2 + L R s + ( 1 − D ) 2 \frac{v_o(s)}{d(s)}=\frac{(V_o+V_d)(1-D)-I_L Ls}{LCs^2+\frac{L}{R}s+(1-D)^2}=\frac{V_i-I_L Ls}{LCs^2+\frac{L}{R}s+(1-D)^2} d(s)vo(s)=LCs2+RLs+(1D)2(Vo+Vd)(1D)ILLs=LCs2+RLs+(1D)2ViILLs

其中,根据之前的结果,输出电压和电感电流为:
V o = V i 1 − D − V d I L = I o 1 − D = V o R L ( 1 − D ) = V i − ( 1 − D ) V d R L ( 1 − D ) 2 V_o = \frac{V_i}{1-D}-V_d \\ I_L = \frac{I_o}{1-D} = \frac{V_o}{R_L(1-D)} = \frac{V_i-(1-D)V_d}{R_L(1-D)^2} Vo=1DViVdIL=1DIo=RL(1D)Vo=RL(1D)2Vi(1D)Vd

代入后,

v o ( s ) d ( s ) = ( V o + V d ) ( 1 − D ) − I L L s L C s 2 + L R s + ( 1 − D ) 2 = V i − V i − ( 1 − D ) V d R ( 1 − D ) 2 L s L C s 2 + L R s + ( 1 − D ) 2 \frac{v_o(s)}{d(s)}=\frac{(V_o+V_d)(1-D)-I_L Ls}{LCs^2+\frac{L}{R}s+(1-D)^2}=\frac{V_i-\frac{V_i-(1-D)V_d}{R(1-D)^2}Ls}{LCs^2+\frac{L}{R}s+(1-D)^2} d(s)vo(s)=LCs2+RLs+(1D)2(Vo+Vd)(1D)ILLs=LCs2+RLs+(1D)2ViR(1D)2Vi(1D)VdLs

如果忽略二极管压降 V d = 0 V_d=0 Vd=0,理想情况下的控制到输出传递函数:
v o ( s ) d ( s ) = ( V o + V d ) ( 1 − D ) − I L L s L C s 2 + L R s + ( 1 − D ) 2 = V i ( 1 − 1 R ( 1 − D ) 2 L s ) L C s 2 + L R s + ( 1 − D ) 2 \frac{v_o(s)}{d(s)}=\frac{(V_o+V_d)(1-D)-I_L Ls}{LCs^2+\frac{L}{R}s+(1-D)^2}=\frac{V_i\left(1-\frac{1}{R(1-D)^2}Ls \right)}{LCs^2+\frac{L}{R}s+(1-D)^2} d(s)vo(s)=LCs2+RLs+(1D)2(Vo+Vd)(1D)ILLs=LCs2+RLs+(1D)2Vi(1R(1D)21Ls)

可以看到传递函数有一个右半平面零点 s = R ( 1 − D ) 2 L s=\frac{R(1-D)^2}{L} s=LR(1D)2

右半平面零点(RHPZ)

右半平面零点Right Half Plane Zero (RHPZ)。RHPZ的幅频特性与一般的左半平面零点相同,但是相频特性与极点相同,给系统引入了-90°相位,恶化了相位裕量。一般开环增益的穿越频率需要设置为小于RHPZ所在频率。

对这篇博文中搭建的boost模型,在占空比较大时更容易观察到这个现象。比如占空比在0.5和0.55跳变:

image-20220410085700985

从boost二极管电流的角度直观理解一下这个现象。看D从0.8突变到0.5的情况,电阻负载。

  • D=0.8时,输出电压高,电感电流I(L1)和负载电流都较大。
  • D突变为0.5时,理论输出电压低于D=0.8的情况,因此最终电感电流和负载电流都会减小。
  • 电感电流需要一定时间下降,而在这段时间里,因为(1-D)从0.2增大为0.5,实际上流过二极管的电流反而增大了,给输出电容充电,电压上升。因此在这段时间内,输出电压会先上升,再下降。

类似的RHPZ现象发生在变比与(1-D)有关的变换器中(或者说,在开关断开期间向输出侧传输能量),如buck-boost、flyback等。

image-20220410091444929

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值