时间序列平稳性分析和白噪声检验

本文探讨时间序列的平稳性,通过ADF检验分析时间序列的平稳性,并展示了如何在Python中实现ADF检验。同时,文章还介绍了自相关图(ACF)和偏自相关图(PACF)在选择ARIMA模型参数中的作用。此外,还讨论了白噪声的概念及如何进行白噪声检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原始的负荷时间序列曲线
在这里插入图片描述

一、时间序列平稳性

时间序列分析之ADF检验

1、ADF检验

在使用很多时间序列模型的时候,如 ARMA、ARIMA,都会要求时间序列是平稳的,所以一般在研究一段时间序列的时候,第一步都需要进行平稳性检验,除了用肉眼检测的方法,另外比较常用的严格的统计检验方法就是ADF检验,也叫做单位根检验。

1.1、ADF检验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hellobigorange

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值