时间序列数据的白噪声检验

本文介绍了时间序列分析中的白噪声序列概念,强调数据平稳性对于数据分析的重要性。通过一阶差分将非平稳数据转换为平稳,进而进行自相关函数图像分析和ADF检验。文中使用MATLAB代码展示数据处理过程,包括原始数据的时序图和自相关函数图像,以及LB检验用于验证差分后数据是否为白噪声序列。最终结果显示,经过差分的数据表现出短期相关性,符合白噪声序列特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题起源

只有数据平稳,才可以借数据。
只有借数据,才可以做分析。

什么是白噪声序列

白噪声序列也称为纯随机序列,它满足两个性质
请添加图片描述
1)数据是平稳的
2)t≠s的时候,方差为0,说明t和s没有线性的关系

白噪声的性质

在白噪声的图上,我们无法抓到规律,因此,我们把握以下性质:

1)纯随机性
请添加图片描述

各序列值之间没有任何的相关关系,即为“没有记忆”的白噪声序列
2)方差齐性

方差等于一个常数。
请添加图片描述
根据Markov定理,只有方差齐性假设成立时,用最小二乘法得到的未知参数估计值才是最准确有效的。
(数据平稳一定同方差)

跨越1步,2步,3步…是不是相关系数为0呢?

如果一个序列是纯随机的,得到一个观察期数为n的观察序列,那么该序列的延迟非零期的样本自相关系数将近似服从均值为0,方差序列观察期数倒数的正态分布。
请添加图片描述
原假设:延迟期数小于或等于m期的序列值之间相互独立
请添加图片描述
备择假设:延迟期数小于或等于k期的序列值之间有相关性

请添加图片描述
平稳数据一般有短期相关性,延迟系数较大的一定为0,一般跨越6步、12步、18步。这三个都为0的话,别的就不需要检验了。

检验原假设的时候,有两个检验,用得最多的是LB检验。
请添加图片描述
请添加图片描述
如果有相关性,则可以建立一定的函数关系进行预测。请添加图片描述

x=[97 130 156.5 135.2 137.7 180.5 205.2 190 188.6 196.7 180.3 210.8 196 223 238.2 263.5 292.6 317 335.4 327 321.9 353.5 397.8 436.8 465.7 476.7 462.6 460.8 501.8 501.5 489.5 542.3 512.2 559.8 542 567];
figure;
subplot(1,2,1);%画一行两列第一个图
plot(x)
title('原始数据时序图');
subplot(1,2,2);%画一行两列第二个图
autocorr(x);
title('自相关函数图像');

请添加图片描述
显然,这不是无关的,表现一阶差分之后的数据平稳性。
非平稳的转化为平稳的,向下向上趋势,差分一次。周期性则多少步的差分。

x=[97 130 156.5 135.2 137.7 180.5 205.2 190 188.6 196.7 180.3 210.8 196 223 238.2 263.5 292.6 317 335.4 327 321.9 353.5 397.8 436.8 465.7 476.7 462.6 460.8 501.8 501.5 489.5 542.3 512.2 559.8 542 567];
figure;
subplot(1,2,1);%画一行两列第一个图
plot(x)
title('原始数据时序图');
subplot(1,2,2);%画一行两列第二个图
autocorr(x);
title('自相关函数图像');
x=x';
x1=diff(x);%求差分,把不是平稳的数据变成平稳的
[h1,p1,adf,ljz]=adftest(x1)

请添加图片描述
不平稳数据,差分后可以看出是平稳的。自相关图出现了短期相关性。

不平稳数据变成平稳的,就可以做了。

N阶差分:消除向上向下趋势的
N步差分:消除周期性的

x=[97 130 156.5 135.2 137.7 180.5 205.2 190 188.6 196.7 180.3 210.8 196 223 238.2 263.5 292.6 317 335.4 327 321.9 353.5 397.8 436.8 465.7 476.7 462.6 460.8 501.8 501.5 489.5 542.3 512.2 559.8 542 567];
figure;
subplot(1,2,1);%画一行两列第一个图
plot(x)
title('原始数据时序图');
subplot(1,2,2);%画一行两列第二个图
autocorr(x);
title('自相关函数图像');
x=x';
x1=diff(x);
[h1,p1,adf,ljz]=adftest(x1)
%白噪声检验,继续用前面的一阶差分之后的数据x1
yanchi=[6,12,18];
[H,pValue,Qstat,CriticalValue]=lbqtest(x1,'lags',yanchi);
%按照统计表格形式,打印相应的统计量
fprintf('%15s%15s%15s','延迟阶数','卡方统计量','p值');
fprintf('\n');
for i=1:length(yanchi)
    fprintf('%18f%19f%19f',yanchi(i),Qstat(i),pValue(i));
    fprintf('\n');
end

请添加图片描述
请添加图片描述
H-判断的结果
pValue-概率
Qstat-统计量
CriticalValue-临界值
x1-数据
‘lags’-按照步长
yanchi-延迟
%15s-后面的几个字在界面哪一个位置,空出几个位置
length–提取长度

请添加图片描述
p值都比0.05大,所以接受原假设,是一个白噪声序列

关于Bandizip 6.25版本的下载,你可以通过在网上搜索并找到可靠的下载来源进行下载安装。在安装过程中,你需要双击下载的安装文件,并按照设置界面的指示进行设置。一般来说,你需要点击"同意并安装"按钮来完成安装过程。在安装完成后,虽然Bandizip 6.25版本不会自动更新,但每次使用时可能会弹出更新提示框,因此你可以在设置中禁止它联网。具体的禁止联网设置方法可能因操作系统而异,以Windows 10为例,你可以在系统设置中找到网络设置,然后对Bandizip进行禁止联网设置。希望这些信息对你有帮助。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [BandZIP无广告版(v6.25)安装及禁止联网设置](https://blog.csdn.net/jialong_chen/article/details/117598927)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [电脑软件:主流的压缩软件对比,看完你就会选择了](https://blog.csdn.net/xishining/article/details/116112135)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值