最短路径优化思路——TSP与GTSP

   最近在考虑数控裁床中走刀路径优化问题,可以转化为GTSP,TSP问题,进而与TSPlib数据库,GTSP测试集进行比较,难的是珠玉在前,很难在测试集上做得比前人好。导师建议用强化学习应用在该领域,其实,做得出效果,哪种算法都可以,效果不够好只能考虑算法的新颖性了吗?

  1. TSP论文,ICA-GA?(2.23)
  2. 针对不同的排样有不同的优化路径,软件得到排样,再用SA算法来解决路径优化,需要花更多时间,看更多论文!不要担心做得好不好,找到创新点,努力去实现!不仅仅是最短路径;(2.24)
  3. 算法改进是一回事,整体思路又是一回事,设想1:(1)聚类分析,减小问题的规模(有人做过);(2)中心点、形心点;(3)贪心算法预处理(有人做过);(4)TSP对入刀点重组顺序(有人做过);(5)老算法的改进(难,在于效果);(6)新算法的引入(效果不一定好);(2.24)
  4. 简化并改进遗传:先不要改字母,而是先注释,搭建框架,修改一部分要先注释掉原部分,然后运行,贪心算法的编程;(2.25)
  5. 引入贪心预搜索(增加耗时,有一定效果),最近邻搜索时不考虑裁剪原点,而是尝试每个样片起始点,入刀点位置(耗时严重);(2.26)
  6. 3条路:TSP、GTSP、服装裁剪路径优化,区别在于测试集的对比,前两种测试集易得,效果难以做出,后一种难以有说服力,尝试用一种新算法?(2.26)
  7. Idea:论文在于创新、思路、方法可行性等。(2.26)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值