最短路径算法Dijkstra+堆优化

最短路径算法Dijkstra+堆优化

Dijkstra算法的输入是一张图和一个源点,输出是该点到图中所有点的最短路径长度。
算法的主要思想是贪心选择,每次选择源点可达的路径长度最短的未访问过的点,以该点为中间结点更新源点到其余各点的最短路径长度。
代码如下,图使用邻接表存储

const int N = 1e5+7;
const int INF = 0x3f3f3f3f;
struct Node{
	int to, w;
};//to指向另一端的结点, w表示边的长度 
vector<Node> g[N];//邻接表存储图 
int n, m, s;//n-结点数, m-边数, s-源点 
int d[N];//记录源点s到图中所有结点的最短路 
bool vis[N];//在Dijkstra算法中用于记录结点是否访问 
void Dijkstra_1(int s) {
	memset(d, 0x3f, sizeof(d));//初始距离设为INF 
	d[s] = 0;//源点到源点的距离为 0
	while (1) {
		//寻找没有访问过的、可达的最短路径 
		int k = -1, curmin = INF;
		for (int i = 1; i <= n; i++) {
			if (d[i] < curmin && vis[i] == false) {
				curmin = d[i];
				k = i;
			}
		}
		if (k == -1) break;//找不到, 算法结束 
		vis[k] = true;
		//以该点为中间结点更新最短路径 
		for (int i = 0; i < g[k].size(); i++) {
			int to = g[k][i].to;
			int w = g[k][i].w;
			if (d[to] > d[k] + w) {
				d[to] = d[k] + w;
			}
		}
	}
}

在寻找源点可达的路径长度最短的、未访问的结点时,每次都是遍历所有结点,此处可以使用堆优化。
代码如下

const int N = 1e5+7;
const int INF = 0x3f3f3f3f;
struct Node{
	int to, w;
};//to指向另一端的结点, w表示边的长度 
vector<Node> g[N];//邻接表存储图 
int n, m, s;//n-结点数, m-边数, s-源点 
int d[N];//记录源点s到图中所有结点的最短路 
bool vis[N];//在Dijkstra算法中用于记录结点是否访问 
void Dijkstra_2(int s) {
	memset(d, 0x3f, sizeof(d));//初始距离设为INF 
	d[s] = 0;//源点到源点的距离为 0
	//使用优先队列实现堆, 默认以pair的first从大到小排序
	priority_queue< pair<int, int> > q;
	q.push(make_pair(0, s));//源点放入堆中 
	while (!q.empty()) {
		pair<int, int> t = q.top(); q.pop();
		int from = t.second;
		if (vis[from]) continue;//跳过已经访问过的结点 
		vis[from] = true;
		//以该点为中间结点更新最短路径 
		for (int i = 0; i < g[from].size(); i++) {
			int to = g[from][i].to;
			int w = g[from][i].w;
			if (d[to] > d[from] + w) {
				d[to] = d[from] + w;
				if (vis[to] == false) {
					//first以负数存储, d小的反而大, 在堆顶 
					q.push(make_pair(-d[to], to));
				}
			}
		}
	}
}

总结

Dijkstra算法是求最短路径较快的算法,在算法竞赛中一般需要使用堆优化的实现方式才能避免TLE。需要注意Dijkstra算法无法处理负环的情况,一般使用SPFA算法判断负环,如果没有负环,还是使用Dijkstra算法较好,有些题目会出现卡SPFA的样例。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值