文章目录
1. 点乘——torch.mul(a, b)
点乘是对应位置元素相乘
点乘都是broadcast的,可以用torch.mul(a, b)
实现,也可以直接用*
实现。
python中的广播机制(broadcasting)
broadcasting可以这样理解:如果你有一个(m,n)的矩阵,让它加减乘除一个(1,n)的矩阵,它会被复制m次,成为一个(m,n)的矩阵,然后再逐元素地进行加减乘除操作。同样地对(m,1)的矩阵成立
图源:https://www.jianshu.com/p/fadd169cd396
- 当a, b维度满足广播机制时,会自动填充到相同维度相点乘。
例如:a的维度为(2,3),b的维度为(1,3);
或者:a的维度为(2,3),b的维度为(2,1)。 - 当a, b维度不满足广播机制时,要求a和b的维度必须相等。
a的维度为(1,2),b的维度为(2,3)就会报错:The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1
报错的意思是b中维度为3的位置必须和a中维度为2的位置相匹配,因为a中有个维度1,要想满足广播机制就必须是(1,2)和(2,2),否则就需要满足维度必须相等(2,3)和(2,3)
import torch
a = torch.ones(3,4)
print(a)
b = torch.Tensor([1,2,3]).reshape((3,1))
print(b