IBM SPSS Modeler 和 PSS Statistics 区别

statistics是统计分析

两者的区别 表面的直接区别是在处理数据的量上有区别,statistics的处理数据量有限,而modeler处理数据的量可以是海量,也就是现在吵得沸沸腾腾的大数据

本质的一些区别是功能上的,modeler包括有统计分析的部分,也有机器学习和人工智能的部分

而statistics主要就是统计分析,是以统计学的理论为主的

modeler更侧重挖掘潜在的知识,为业务做指导。 statistic侧重在统计分析功能的应用

其中一部分分析方法有重叠

modelor 的用途是数据挖掘,侧重于从大数据中找出有价zhi值的东西,其中采用的一部分统计方法是statistics中也有的,除了统计学方法,还有很多新的模型方法如决策树、向量机等

而statistics 则主要是统计学方法,用来做统计分析

可以这么理解,spss是一款统计软件,而SPSS modeler是一款专门的数据挖掘软件,简单易用,能适用各种流行的数据挖掘算法,无需编程基础就可以开展很好的数据挖掘分析,支持管理工作。

### SPSS Statistics Software Information #### 用户友好型界面 SPSS是世界上最早采用图形菜单驱动界面的统计软件之一。这款软件最显著的特点在于其操作界面极其友好,能够将几乎所有功能通过统一、规范化的界面呈现给用户[^1]。 #### 数据输入与管理 为了便于数据处理,SPSS采用了类似Excel表格的形式来进行数据录入管理工作。这种设计使得数据接口更加通用,支持轻松导入来自其他数据库的数据文件。这不仅提高了工作效率,也增强了不同系统间的数据兼容性。 #### 统计分析能力 SPSS涵盖了广泛而成熟的统计分析方法,足以应对大多数非专业人员日常工作中遇到的各种需求。无论是描述性统计还是复杂的回归模型,都能在这套工具中找到相应的解决方案。此外,对于那些希望深入挖掘数据背后规律的研究者来说,SPSS同样提供了丰富的高级特性供探索使用。 #### 输出结果展示 当涉及到结果可视化方面时,SPSS的表现尤为出色。除了提供直观易懂的结果报告外,还可以将其保存为专有的SPO格式,并进一步转换成HTML或纯文本形式以便于分享交流。值得注意的是,在最新版本中,SPSS还保留了传统命令行模式的支持,允许熟练使用者通过编写脚本来实现自动化批处理任务,从而提高复杂项目执行效率。 ```python import spss spss.Submit(""" GET FILE='example.sav'. DESCRIPTIVES VARIABLES=var1 var2 /STATISTICS=MEAN STDDEV. """) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值