Ubuntu18.04 Anaconda3+Tensorflow2.1安装后的使用
以一个简单FNN实例为task
×× 安装过程参考大佬链接:ubuntu16.04下安装&配置anaconda+tensorflow新手教程
××现将重点过程列下,防遗忘:
1.激活conda创建的虚拟环境
TensorFlow是在conda创建的虚拟环境中安装的,因此在使用Tensorflow时应
激活环境:source activate tf
(tf为创建时环境的昵称),
而关闭环境的命令为:source deactivate tf
。
2.tensorflow函数的使用
本机安装的tensorflow2,在使用V1版本函数时可能会报错:module '...' has no attribute
’…’,应当写作以下形式:
tf.compat.v1.Function(...)
并且在使用之前,在文件前面、导包之后禁用紧急执行:
tf.compat.v1.disable_eager_execution()
3.代码附录:
以下代码copy并修改自大佬链接代码:用Tensorflow搭建第一个神经网络
,被修改后的代码可在tensorflow2.1+Python3.7+Pycharm2020.1上运行:
控制台下代码:
import tensorflow as tf
import numpy as np
import os
# 关闭紧急执行(tf2执行tf1函数)
tf.compat.v1.disable_eager_execution()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# ==================
# 创建一些等距离的数据(数据量为300),同时用np.newaxis进行扩展一个维度
x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis]
# 创建同等规模的噪音(这里采用的是均值为0,标准差为0.05的,保持shape和类型一致)
noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
# 原数据label(y = x^2 - 0.5) 之后添加一点点噪声(让人感觉更像现实中获取的数据一样)
y_data = np.square(x_data) - 0.5 + noise
# 创建一个添加层数的函数,使得实现变得简单
# inputs是输出的东西,in_size表示的是该层的输入层维度,out_size表示的是该层的输出层维度,activation_function就是一个
def add_layer(inputs, in_size, out_size, activation_function=None):
# 创建系数矩阵,矩阵规模为 [in_size * out_size]
weights = tf.Variable(tf.compat.v1.random_normal([in_size, out_size]))
# 创建一个biases矩阵,这里考虑到biases用0不是那么好,所以,一开始设置的时候加个0.1
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 构建方程
wx_plus_b = tf.matmul(inputs, weights) + biases
if activation_function is None:
output = wx_plus_b
else:
output = activation_function(wx_plus_b)
return output
# xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1])
xs=tf.compat.v1.placeholder(tf.float32,[None,1])
ys=tf.compat.v1.placeholder(tf.float32,[None,1])
# 得到中间那一层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# 得到输出层
prediction = add_layer(l1, 10, 1)
# 在300个求一个平方和的均值,设置了切片的index为1,原因是最后的矩阵规模为300*1,大致类似:[[1],300个,[2]]
# tf.reduce_xx(x,axis),axis为0或1,表示按列或行运算(求和、均值、最值等)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), 1))
# 梯度下降训练 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
train_step = tf.compat.v1.train.GradientDescentOptimizer(0.1).minimize(loss)
# 变量初始化
init = tf.compat.v1.global_variables_initializer()
# 启动会话
with tf.compat.v1.Session() as sess:
sess.run(init)
for i in range(1000):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
结果:
matplotlib.pyplot下代码:
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
# 关闭紧急执行(tf2执行tf1函数)
tf.compat.v1.disable_eager_execution()
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# ==================
# 创建一些等距离的数据(数据量为300),同时用np.newaxis进行扩展一个维度
x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis]
# 创建同等规模的噪音(这里采用的是均值为0,标准差为0.05的,保持shape和类型一致)
noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
# 原数据label(y = x^2 - 0.5) 之后添加一点点噪声(让人感觉更像现实中获取的数据一样)
y_data = np.square(x_data) - 0.5 + noise
# 创建一个添加层数的函数,使得实现变得简单
# inputs是输出的东西,in_size表示的是该层的输入层维度,out_size表示的是该层的输出层维度,activation_function就是一个
def add_layer(inputs, in_size, out_size, activation_function=None):
# 创建系数矩阵,矩阵规模为 [in_size * out_size]
weights = tf.Variable(tf.compat.v1.random_normal([in_size, out_size]))
# 创建一个biases矩阵,这里考虑到biases用0不是那么好,所以,一开始设置的时候加个0.1
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
# 构建方程
wx_plus_b = tf.matmul(inputs, weights) + biases
if activation_function is None:
output = wx_plus_b
else:
output = activation_function(wx_plus_b)
return output
# xs = tf.placeholder(tf.float32, [None, 1]) ys = tf.placeholder(tf.float32, [None, 1])
xs=tf.compat.v1.placeholder(tf.float32,[None,1])
ys=tf.compat.v1.placeholder(tf.float32,[None,1])
# 得到中间那一层
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# 得到输出层
prediction = add_layer(l1, 10, 1)
# 在300个求一个平方和的均值,设置了切片的index为1,原因是最后的矩阵规模为300*1,大致类似:[[1],300个,[2]]
# tf.reduce_xx(x,axis),axis为0或1,表示按列或行运算(求和、均值、最值等)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction), 1))
# 梯度下降训练 train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
train_step = tf.compat.v1.train.GradientDescentOptimizer(0.1).minimize(loss)
# 变量初始化
init = tf.compat.v1.global_variables_initializer()
# 启动会话
with tf.compat.v1.Session() as sess:
sess.run(init)
fig = plt.figure()
# 创建两个子图
ax_begin = fig.add_subplot(2, 1, 1)
ax_end = fig.add_subplot(2, 1, 2)
ax_begin.scatter(x_data, y_data,2)
ax_end.scatter(x_data, y_data,2)
# 起始版
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction,函数用法:https://www.cnblogs.com/blogwww/p/9583255.html
ax_begin.plot(x_data, prediction_value, 'r-', lw=1.5)
ax_begin.set_title("Begin")
plt.tight_layout()
for i in range(2000):
# training
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
# 经过迭代后的版本
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
ax_end.plot(x_data, prediction_value, 'r-', lw=1.5)
ax_end.set_title("End")
plt.show()
结果如下(自己跑的):
训练网络的保存与加载:
【且参考大佬的链接】:一文学会用 Tensorflow 搭建神经网络