专题三 第八题

1.题目编号:1016

2.简单题意:在一个无限大的二维平面中,要求:1.每步只能移动一个格;2.不能向后走;3.走过的格子不能再走第二遍;由此求出走n次不同的方案数。

3.解题思路形成过程:我先在稿纸上画了画走一步、走二步、走三步、走四步的不同方案数,分别为:3,7,17,41;猛的看并不能看出规律来,但是在算的过程中我发现每次增加的方案数和点有关系,有的格可以走两步,有的格可以走三步,走三步的是n-2的总方案数,而走两步的则是n-1的总方案数减去n-2的总方案数。

4.感悟:突然感觉自己好机智,哈哈~一下子就AC了,找到规律之后做起来真的很容易,好喜欢这样的题

5.AC的代码:

#include<iostream>
using namespace std;
int main(){
    int c,n,x=0,y=1;
    long long sum[21]={0};
     for (int i=1;i<=20;i++){
         sum[i]=x*2+y*3;
         y=x+y;
         x=sum[i]-y;
     }
    cin>>c;
    while(c--){
        cin>>n;
        cout<<sum[n]<<endl;
    }
    return 0;
}

原题:

Problem Description


在一无限大的二维平面中,我们做如下假设:<br>1、&nbsp;&nbsp;每次只能移动一格;<br>2、&nbsp;&nbsp;不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);<br>3、&nbsp;&nbsp;走过的格子立即塌陷无法再走第二次;<br><br>求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。<br>


 


Input


首先给出一个正整数C,表示有C组测试数据<br>接下来的C行,每行包含一个整数n (n<=20),表示要走n步。<br>


 


Output


请编程输出走n步的不同方案总数;<br>每组的输出占一行。<br>


 


Sample Input


  
  
2 1 2


 


Sample Output


  
  
3 7



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值