1.题目编号:1016
2.简单题意:在一个无限大的二维平面中,要求:1.每步只能移动一个格;2.不能向后走;3.走过的格子不能再走第二遍;由此求出走n次不同的方案数。
3.解题思路形成过程:我先在稿纸上画了画走一步、走二步、走三步、走四步的不同方案数,分别为:3,7,17,41;猛的看并不能看出规律来,但是在算的过程中我发现每次增加的方案数和点有关系,有的格可以走两步,有的格可以走三步,走三步的是n-2的总方案数,而走两步的则是n-1的总方案数减去n-2的总方案数。
4.感悟:突然感觉自己好机智,哈哈~一下子就AC了,找到规律之后做起来真的很容易,好喜欢这样的题
5.AC的代码:
#include<iostream>
using namespace std;
int main(){
int c,n,x=0,y=1;
long long sum[21]={0};
for (int i=1;i<=20;i++){
sum[i]=x*2+y*3;
y=x+y;
x=sum[i]-y;
}
cin>>c;
while(c--){
cin>>n;
cout<<sum[n]<<endl;
}
return 0;
}
原题:
Problem Description
在一无限大的二维平面中,我们做如下假设:<br>1、 每次只能移动一格;<br>2、 不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);<br>3、 走过的格子立即塌陷无法再走第二次;<br><br>求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。<br>
Input
首先给出一个正整数C,表示有C组测试数据<br>接下来的C行,每行包含一个整数n (n<=20),表示要走n步。<br>
Output
请编程输出走n步的不同方案总数;<br>每组的输出占一行。<br>
Sample Input
2 1 2
Sample Output
3 7