题目描述:
在一无限大的二维平面中,我们做如下假设: 1、每次只能移动一格; 2、不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走); 3、走过的格子立即塌陷无法再走第二次。 求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。
输入格式:
第一行包含一个整数n(n<=20),表示要走n步。
输出格式:
输出占一行表答案。
样例输入:
样例1 1 样例2 2
样例输出:
样例1 3 样例2 7
时间限制: 1000ms
空间限制: 256MB
代码如下:
#include <bits/stdc++.h>
using namespace std;
int main(){
int n,a[101]={1},b[101]={1},c[101]={1};
cin>>n;
for(int i=1;i<n;i++){
a[i]=a[i-1]+b[i-1]+c[i-1];
b[i]=a[i-1]+b[i-1];
c[i]=a[i-1]+c[i-1];
}
cout<<a[n-1]+b[n-1]+c[n-1];
return 0;
}