自用的高等数学笔记

本文深入探讨了泰勒公式的一元与多元函数展开,包括一元函数的麦克劳林公式和多元函数的泰勒展开。同时,介绍了空间解析几何中的平面与直线,以及质心的概念。此外,文章还涵盖了微积分中的不定积分、隐函数求导、微分方程的解法,如二阶线性微分方程和欧拉方程。最后讨论了正项级数、交错级数和傅里叶级数等序列与级数理论。
摘要由CSDN通过智能技术生成

泰勒公式

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + f ( 3 ) ( x 0 ) 2 ! ( x − x 0 ) 3 + ⋯ f ( a ) = f ( x ) + f ′ ( x ) ( a − x ) + f ′ ′ ( ξ 1 ) 2 ! ( a − x ) 2 \begin{aligned} & f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\frac{f^{(3)}(x_0)}{2!}(x-x_0)^3+\cdots \\ & f(a)=f(x)+f'(x)(a-x)+\frac{f''(\xi_1)}{2!}(a-x)^2 \\ \end{aligned} f(x)=f(x0)+f(x0)(xx0)+2!f(x0)(xx0)2+2!f(3)(x0)(xx0)3+f(a)=f(x)+f(x)(ax)+2!f(ξ1)(ax)2

一元函数泰勒展开

sin ⁡ x = x − x 3 3 ! + x 5 5 ! − ⋯ cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + ⋯ tan ⁡ x = x + x 3 3 + x 5 5 + ⋯ arctan ⁡ x = x − x 3 3 + x 5 5 − ⋯ ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − ⋯ e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ 1 1 − x = 1 + x + x 2 + x 3 + ⋯ ( 1 + x ) n = 1 + n x + n ( n − 1 ) 2 x 2 ⋯ \begin{aligned} \sin x&=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots\\ \cos x&=1-\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots\\ \tan x&=x+\frac{x^3}{3}+\frac{x^5}{5}+\cdots\\ \arctan x&=x-\frac{x^3}{3}+\frac{x^5}{5}-\cdots\\ \ln(1+x)&=x-\frac{x^2}{2}+\frac{x^3}{3}-\cdots\\ \text{e}^x&=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots\\ \frac{1}{1-x}&=1+x+x^2+x^3+\cdots\\ (1+x)^n&=1+nx+\frac{n(n-1)}{2}x^2\cdots\\ \end{aligned} sinxcosxtanxarctanxln(1+x)ex1x1(1+x)n=x3!x3+5!x5=12!x2+4!x4+=x+3x3+5x5+=x3x3+5x5=x2x2+3x3=1+x+2!x2+3!x3+=1+x+x2+x3+=1+nx+2n(n1)x2

多元函数泰勒展开

f ( x ) = ∑ k = 0 ∞ 1 k ! ( h 1 ∂ ∂ x 1 + ⋯ + h n ∂ ∂ x n ) k f ( x 0 ) f(\boldsymbol{x})=\sum_{k=0}^{\infty}\frac{1}{k!} (h_1\frac{\partial}{\partial x_1}+\cdots+h_n\frac{\partial}{\partial x_n})^kf(\boldsymbol{x}_0) f(x)=k=0k!1(h1x1++hnxn)kf(x0)
其中 h = x − x 0 \boldsymbol{h}=\boldsymbol{x}-\boldsymbol{x}_0 h=xx0。二阶泰勒展开矢量形式
f ( x ) = f ( x 0 ) + ∇ f ( x 0 ) T ( x − x 0 ) + 1 2 ( x − x 0 ) T ∇ 2 f ( x 0 ) ( x − x 0 ) + o ( ∥ x − x 0 ∥ 2 ) f(\boldsymbol{x})=f(\boldsymbol{x}_0)+\nabla f(\boldsymbol{x}_0)^T(\boldsymbol{x}-\boldsymbol{x}_0)+ \frac{1}{2}(\boldsymbol{x}-\boldsymbol{x}_0)^T\nabla^2f(\boldsymbol{x}_0)(\boldsymbol{x}-\boldsymbol{x}_0) +o(\Vert\boldsymbol{x}-\boldsymbol{x}_0\Vert^2) f(x)=f(x0)+f(x0)T(xx0)+21(xx0)T2f(x0)(xx0)+o(xx02)
其中 ∇ f ( x 0 ) = ∂ f ( x ) ∂ x ∣ x = x 0 \nabla f(\boldsymbol{x}_0)=\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}\bigg|_{\boldsymbol{x}=\boldsymbol{x}_0} f(x0)=xf(x)x=x0
三元二阶泰勒展开,令
v = [ x y z ] , f = f ( v ) , ∂ f 0 ∂ x = ∂ f ( v ) ∂ x ∣ v = v 0 \boldsymbol{v}=\begin{bmatrix}x\\y\\z\end{bmatrix},f=f(\boldsymbol{v}), \frac{\partial f_0}{\partial x}=\frac{\partial f(\boldsymbol{v})}{\partial x}\bigg|_{\boldsymbol{v}=\boldsymbol{v}_0} v=xyz,f=f(v),xf0=xf(v)v=v0

f ( v ) = f ( [ x 0 y 0 z 0 ] ) + [ ∂ f 0 ∂ x ∂ f 0 ∂ y ∂ f 0 ∂ z ] [ h x h y h z ] + 1 2 [ h x h y h z ] [ ∂ 2 f 0 ∂ x 2 ∂ 2 f 0 ∂ x ∂ y ∂ 2 f 0 ∂ x ∂ z ∂ 2 f 0 ∂ y ∂ x ∂ 2 f 0 ∂ y 2 ∂ 2 f 0 ∂ y ∂ z ∂ 2 f 0 ∂ z ∂ x ∂ 2 f 0 ∂ x ∂ y ∂ 2 f 0 ∂ z 2 ] [ h x h y h z ] f(\boldsymbol{v})=f(\begin{bmatrix}x_0\\y_0\\z_0\end{bmatrix})+ \begin{bmatrix}\frac{\partial f_0}{\partial x} & \frac{\partial f_0}{\partial y} & \frac{\partial f_0}{\partial z}\end{bmatrix} \begin{bmatrix}h_x\\h_y\\h_z\end{bmatrix}+ \frac{1}{2}\begin{bmatrix}h_x & h_y & h_z\end{bmatrix}\begin{bmatrix} \frac{\partial^2f_0}{\partial x^2} & \frac{\partial^2f_0}{\partial x\partial y}& \frac{\partial^2f_0}{\partial x\partial z} \\ \frac{\partial^2f_0}{\partial y\partial x} & \frac{\partial^2f_0}{\partial y^2}& \frac{\partial^2f_0}{\partial y\partial z} \\ \frac{\partial^2f_0}{\partial z\partial x} & \frac{\partial^2f_0}{\partial x\partial y}& \frac{\partial^2f_0}{\partial z^2} \end{bmatrix}\begin{bmatrix} h_x \\ h_y \\ h_z\end{bmatrix} f(v)=f(x0y0z0)+[xf0yf0zf0]hxhyhz+21[hxhyhz]x22f0yx2f0zx2f0xy2f0y22f0xy2f0xz2f0yz2f0z22f0hxhyhz
求导
∂ f ( v ) ∂ v = [ ∂ f 0 ∂ x ∂ f 0 ∂ y ∂ f 0 ∂ z ] + [ ∂ 2 f 0 ∂ x 2 ∂ 2 f 0 ∂ x ∂ y ∂ 2 f 0 ∂ x ∂ z ∂ 2 f 0 ∂ y ∂ x ∂ 2 f 0 ∂ y 2 ∂ 2 f 0 ∂ y ∂ z ∂ 2 f 0 ∂ z ∂ x ∂ 2 f 0 ∂ x ∂ y ∂ 2 f 0 ∂ z 2 ] [ h x h y h z ] \frac{\partial f(\boldsymbol{v})}{\partial \boldsymbol{v}}= \begin{bmatrix}\frac{\partial f_0}{\partial x} \\ \frac{\partial f_0}{\partial y} \\ \frac{\partial f_0}{\partial z}\end{bmatrix}+ \begin{bmatrix} \frac{\partial^2f_0}{\partial x^2} & \frac{\partial^2f_0}{\partial x\partial y}& \frac{\partial^2f_0}{\partial x\partial z} \\ \frac{\partial^2f_0}{\partial y\partial x} & \frac{\partial^2f_0}{\partial y^2}& \frac{\partial^2f_0}{\partial y\partial z} \\ \frac{\partial^2f_0}{\partial z\partial x} & \frac{\partial^2f_0}{\partial x\partial y}& \frac{\partial^2f_0}{\partial z^2} \end{bmatrix}\begin{bmatrix}h_x\\h_y\\h_z\end{bmatrix} vf(v)=xf0yf0zf0+x22f0yx2f0zx2f0xy2f0y22f0xy2f0xz2f0yz2f0z22f0hxhyhz
∂ f ( v ) ∂ v = ∇ f ( x 0 ) + ∇ 2 f ( x 0 ) ( v − v 0 ) \frac{\partial f(\boldsymbol{v})}{\partial \boldsymbol{v}}= \nabla f(\boldsymbol{x}_0)+\nabla^2f(\boldsymbol{x}_0)(\boldsymbol{v}-\boldsymbol{v}_0) vf(v)=f(x0)+2f(x0)(vv0)
f ( v ) f(\boldsymbol{v}) f(v)是一个标量,而 ∂ f ( v ) ∂ v \frac{\partial f(\boldsymbol{v})}{\partial \boldsymbol{v}} vf(v)是一个矢量。
∂ f ( v ) ∂ v = 0 \frac{\partial f(\boldsymbol{v})}{\partial \boldsymbol{v}}=0 vf(v)=0可解得
v − v 0 = − ( ∇ 2 f ( x 0 ) ) − 1 ∇ f ( x 0 ) \boldsymbol{v}-\boldsymbol{v}_0= -(\nabla^2f(\boldsymbol{x}_0))^{-1}\nabla f(\boldsymbol{x}_0) vv0=(2f(x0))1f(x0)
代入 f ( x ) f(\boldsymbol{x}) f(x)
f ( x ) = f ( x 0 ) + ∇ f ( x 0 ) T ( − ( ∇ 2 f ( x 0 ) ) − 1 ∇ f ( x 0 ) ) + 1 2 ( ∇ 2 f ( x 0 ) ) − 1 ∇ f ( x 0 ) ) T ∇ 2 f ( x 0 ) ( ∇ 2 f ( x 0 ) ) − 1 ∇ f ( x 0 ) ) = f 0 − ( f 0 ′ ) T ( f 0 ′ ′ ) − 1 f 0 ′ + 1 2 ( ( f 0 ′ ′ ) − 1 f 0 ′ ) T f 0 ′ ′ ( ( f 0 ′ ′ ) − 1 f 0 ′ ) = f 0 − ( f 0 ′ ) T ( f 0 ′ ′ ) − 1 f 0 ′ + 1 2 ( f 0 ′ ) T ( f 0 ′ ′ ) − 1 f 0 ′ = f 0 − 1 2 ( f 0 ′ ) T ( f 0 ′ ′ ) − 1 f 0 ′ = f ( x 0 ) + 1 2 ∂ f ( x 0 ) ∂ x T h \begin{aligned} f(\boldsymbol{x})&=f(\boldsymbol{x}_0)+\nabla f(\boldsymbol{x}_0)^T(-(\nabla^2f(\boldsymbol{x}_0))^{-1}\nabla f(\boldsymbol{x}_0))\\ &+\frac{1}{2}(\nabla^2f(\boldsymbol{x}_0))^{-1}\nabla f(\boldsymbol{x}_0))^T\nabla^2f(\boldsymbol{x}_0)(\nabla^2f(\boldsymbol{x}_0))^{-1}\nabla f(\boldsymbol{x}_0))\\ &=f_0-(f'_0)^T(f''_0)^{-1}f'_0+\frac{1}{2}((f''_0)^{-1}f'_0)^Tf''_0((f''_0)^{-1}f'_0)\\ &=f_0-(f'_0)^T(f''_0)^{-1}f'_0+\frac{1}{2}(f'_0)^T(f''_0)^{-1}f'_0\\ &=f_0-\frac{1}{2}(f'_0)^T(f''_0)^{-1}f'_0\\ &=f(\boldsymbol{x}_0)+\frac{1}{2}\frac{\partial f(\boldsymbol{x}_0)}{\partial \boldsymbol{x}}^T\boldsymbol{h} \end{aligned} f(x)=f(x0)+f(x0)T((2f(x0))1f(x0))+21(2f(x0))1f(x0))T2f(x0)(2f(x0))1f(x0))=f0(f0)T(f0)1f0+21((f0)1f0)Tf0((f0)1f0)=f0(f0)T(f0)1f0+21(f0)T(f0)1f0=f021(f0)T(f0)1f0=f(x0)+21xf(x0)Th

空间解析几何

平面

A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A x + B y + C z + D = 0 x a + y b + z c = 1 n ⃗ = ( A , B , C ) A(x-x_0)+B(y-y_0)+C(z-z_0)=0 \\ Ax+By+Cz+D=0 \\ \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \\ \vec{n}=(A,B,C) \\ A(xx0)+B(yy0)+C(zz0)=0Ax+By+Cz+D=0ax+by+cz=1n =(A,B,C)

直线

x − x 0 m = y − y 0 n = z − z 0 p s ⃗ = ( m , n , p ) \frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} \\ \vec{s}=(m,n,p) mxx0=nyy0=pzz0s =(m,n,p)

质心

x ˉ = ∬ x ρ ( x , y ) d σ ∬ ρ ( x , y ) d σ z ˉ = ∭ z ρ ( x , y , z ) d σ ∭ ρ ( x , y , z ) d σ \begin{aligned} & \bar{x}=\frac{\iint x\rho(x,y)\text{d}\sigma}{\iint\rho(x,y)\text{d}\sigma} \\ & \bar{z}=\frac{\iiint z\rho(x,y,z)\text{d}\sigma}{\iiint\rho(x,y,z)\text{d}\sigma} \\ \end{aligned} xˉ=ρ(x,y)dσxρ(x,y)dσzˉ=ρ(x,y,z)dσzρ(x,y,z)dσ

双曲函数

cosh ⁡ x = e x + e − x 2 , sinh ⁡ x = e x − e − x 2 cosh ⁡ ( − x ) = cosh ⁡ ( x ) , sinh ⁡ ( − x ) = − sinh ⁡ ( x ) cosh ⁡ ( x + y ) = cosh ⁡ x cosh ⁡ y + sinh ⁡ x sinh ⁡ y sinh ⁡ ( x + y ) = sinh ⁡ x cosh ⁡ y + cosh ⁡ x sinh ⁡ y cosh ⁡ 2 x − sinh ⁡ 2 x = 1 cosh ⁡ 2 x = cosh ⁡ 2 x + sinh ⁡ 2 x sinh ⁡ 2 x = 2 sinh ⁡ x cosh ⁡ x cosh ⁡ ′ x = sinh ⁡ x , sinh ⁡ ′ x = cosh ⁡ x \cosh x=\frac{\text{e}^x+\text{e}^{-x}}{2},\sinh x=\frac{\text{e}^x-\text{e}^{-x}}{2} \\ \cosh(-x)=\cosh(x),\sinh(-x)=-\sinh(x) \\ \cosh(x+y)=\cosh x\cosh y+\sinh x\sinh y \\ \sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y \\ \cosh^2x-\sinh^2x=1 \\ \cosh 2x=\cosh^2x+\sinh^2x \\ \sinh 2x=2\sinh x\cosh x \\ \cosh'x=\sinh x,\quad\sinh'x=\cosh x coshx=2ex+ex,sinhx=2exexcosh(x)=cosh(x),sinh(x)=sinh(x)cosh(x+y)=coshxcoshy+sinhxsinhysinh(x+y)=sinhxcoshy+coshxsinhycosh2xsinh2x=1cosh2x=cosh2x+sinh2xsinh2x=2sinhxcoshxcoshx=sinhx,sinhx=coshx

导数

( cot ⁡ x ) ′ = − 1 sin ⁡ 2 x (\cot x)'=-\frac{1}{\sin^2x} (cotx)=sin2x1

隐函数求导

F ( x , y ) = 0 , d y d x = − F x F y F ( x , y , z ) = 0 , ∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z F(x,y)=0,\frac{\text{d}y}{\text{d}x}=-\frac{F_x}{F_y} \\ F(x,y,z)=0,\frac{\partial z}{\partial x}=-\frac{F_x}{F_z}, \frac{\partial z}{\partial y}=-\frac{F_y}{F_z} F(x,y)=0,dxdy=FyFxF(x,y,z)=0,xz=FzFx,yz=FzFy

不定积分

∫ 1 x 2 + 1 d x = ln ⁡ ∣ x + x 2 + 1 ∣ + C ∫ e a x cos ⁡ b x d x = e a x a 2 + b 2 ( a cos ⁡ b x + b sin ⁡ b x ) + C ∫ e a x sin ⁡ b x d x = e a x a 2 + b 2 ( a sin ⁡ b x − b cos ⁡ b x ) + C ∫ e a x cos ⁡ b x + j e a x sin ⁡ b x d x = ∫ e ( a + j b ) x d x = e ( a + j b ) x a + j b + C ∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x   d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \begin{aligned} & \int\frac{1}{\sqrt{x^2+1}}\text{d}x=\ln|x+\sqrt{x^2+1}|+C \\ & \int\text{e}^{ax}\cos bx\text{d}x=\frac{\text{e}^{ax}}{a^2+b^2}(a\cos bx+b\sin bx)+C \\ & \int\text{e}^{ax}\sin bx\text{d}x=\frac{\text{e}^{ax}}{a^2+b^2}(a\sin bx-b\cos bx)+C \\ & \int\text{e}^{ax}\cos bx+\text{j}\text{e}^{ax}\sin bx\text{d}x=\int \text{e}^{(a+\text{j}b)x}\text{d}x=\frac{\text{e}^{(a+\text{j}b)x}}{a+\text{j}b}+C \\ & \int \sec x \mathrm{~d} x=\ln |\sec x+\tan x|+C \\ & \int \csc x \mathrm{~d} x=\ln |\csc x-\cot x|+C \\ \end{aligned} x2+1 1dx=lnx+x2+1 +Ceaxcosbxdx=a2+b2eax(acosbx+bsinbx)+Ceaxsinbxdx=a2+b2eax(asinbxbcosbx)+Ceaxcosbx+jeaxsinbxdx=e(a+jb)xdx=a+jbe(a+jb)x+Csecx dx=lnsecx+tanx+Ccscx dx=lncscxcotx+C

不定积分列表法

∫ x 3 e 2 x d x = x 3 1 2 e 2 x − 3 x 2 1 4 e 2 x + 6 x 1 8 e 2 x − 6 1 16 e 2 x \int x^3\text{e}^{2x}\text{d}x=x^3\frac{1}{2}\text{e}^{2x}-3x^2\frac{1}{4}\text{e}^{2x}+6x\frac{1}{8}\text{e}^{2x}-6\frac{1}{16}\text{e}^{2x} \\ x3e2xdx=x321e2x3x241e2x+6x81e2x6161e2x

1 2 e 2 x \frac{1}{2}\text{e}^{2x} 21e2x 1 4 e 2 x \frac{1}{4}\text{e}^{2x} 41e2x 1 8 e 2 x \frac{1}{8}\text{e}^{2x} 81e2x
+-+
x 3 x^3 x3 3 x 2 3x^2 3x2 6 x 6x 6x

没有初等函数的原函数

∫ e x 2 d x ∫ sin ⁡ x x d x ∫ 1 ln ⁡ x d x ∫ 1 1 + x 4 d x ∫ 1 − k 2 sin ⁡ 2 x d x ∫ e 1 x d x \int\text{e}^{x^2}\text{d}x\quad \int\frac{\sin x}{x}\text{d}x\quad \int\frac{1}{\ln x}\text{d}x\quad \int\frac{1}{\sqrt{1+x^4}}\text{d}x\quad \int\sqrt{1-k^2\sin^2x}\text{d}x \\ \int\text{e}^{\frac{1}{x}}\text{d}x\quad ex2dxxsinxdxlnx1dx1+x4 1dx1k2sin2x dxex1dx

定积分

∫ 0 + ∞ e − x 2 d x = t = x x = t 2 1 2 ∫ 0 + ∞ e − t t d t = 1 2 Γ ( 1 2 ) = π 2 ∫ 0 + ∞ e − x 2 d x = ∫ 0 + ∞ ∫ 0 + ∞ e − x 2 − y 2 d x d y = ∫ 0 π 2 ∫ 0 + ∞ e − r 2 r d r d θ = ∫ 0 π 2 1 2 d θ = π 2 ∫ 0 π 2 sin ⁡ x d x = ∫ 0 π 2 sin ⁡ 2 x d x ∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \begin{aligned} \int_0^{+\infty}\text{e}^{-x^2}\text{d}x &\xlongequal[t=\sqrt{x}]{x=t^2}\frac{1}{2}\int_0^{+\infty}\frac{\text{e}^{-t}}{\sqrt{t}}\text{d}t =\frac{1}{2}\Gamma(\frac{1}{2}) =\frac{\sqrt{\pi}}{2} \\ \int_0^{+\infty}\text{e}^{-x^2}\text{d}x &= \sqrt{\int_0^{+\infty}\int_0^{+\infty}\text{e}^{-x^2-y^2}\text{d}x\text{d}y} \\ &= \sqrt{\int_0^{\frac{\pi}{2}}\int_0^{+\infty}\text{e}^{-r^2}r\text{d}r\text{d}\theta} \\ &= \sqrt{\int_0^{\frac{\pi}{2}}\frac{1}{2}\text{d}\theta}=\frac{\sqrt{\pi}}{2} \\ \int_0^{\frac{\pi}{2}}\sin x\text{d}x &= \int_0^{\frac{\pi}{2}}\sin 2x\text{d}x \\ \int_a^bf(x)\text{d}x &= \int_a^bf(a+b-x)\text{d}x \\ \end{aligned} 0+ex2dx0+ex2dx02πsinxdxabf(x)dxx=t2 t=x 210+t etdt=21Γ(21)=2π =0+0+ex2y2dxdy =02π0+er2rdrdθ =02π21dθ =2π =02πsin2xdx=abf(a+bx)dx

Γ \Gamma Γ函数

Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x Γ ( s + 1 ) = s Γ ( s ) = s ! \begin{aligned} & \Gamma(s)=\int_0^{+\infty}\text{e}^{-x}x^{s-1}\text{d}x \\ & \Gamma(s+1)=s\Gamma(s)=s! \\ \end{aligned} Γ(s)=0+exxs1dxΓ(s+1)=sΓ(s)=s!
余元公式
Γ ( s ) Γ ( 1 − s ) = π sin ⁡ π s \Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin\pi s} Γ(s)Γ(1s)=sinπsπ

罗巴切夫斯基(Lobachevsky)积分

f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+) f ( π − x ) = f ( x ) f(\pi-x)=f(x) f(πx)=f(x)以及 f ( x + π ) = f ( x ) f(x+\pi)=f(x) f(x+π)=f(x),则有
∫ 0 + ∞ f ( x ) sin ⁡ x x = ∫ 0 π 2 f ( x ) d x \int_0^{+\infty} f(x)\frac{\sin x}{x}=\int_0^{\frac{\pi}{2}}f(x)\text{d}x 0+f(x)xsinx=02πf(x)dx

微分方程

常用变量代换

z = y x , z = 1 y , z = y ′ \begin{aligned} & z=\frac{y}{x},z=\frac{1}{y},z=y' \\ \end{aligned} z=xy,z=y1,z=y

二阶线性微分方程解的结构

y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + f ∗ ( x ) \begin{aligned} & y''+P(x)y'+Q(x)y=0 \\ & y=C_1y_1(x)+C_2y_2(x) \\ & y''+P(x)y'+Q(x)y=f(x) \\ & y=C_1y_1(x)+C_2y_2(x)+f^*(x) \\ \end{aligned} y+P(x)y+Q(x)y=0y=C1y1(x)+C2y2(x)y+P(x)y+Q(x)y=f(x)y=C1y1(x)+C2y2(x)+f(x)

二阶常系数齐次线性微分方程

特征方程 x 2 + p x + q = 0 x^2+px+q=0 x2+px+q=0,单根 r 1 , r 2 r_1,r_2 r1,r2,复根 r r r,共轭复根 α ± j β \alpha\pm \text{j}\beta α±jβ
y ′ ′ + p y ′ + q y = 0 y = C 1 e r 1 x + C 2 e r 2 x y = ( C 1 + C 2 x ) e r x y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) \begin{aligned} & y''+py'+qy=0 \\ & y=C_1\text{e}^{r_1x}+C_2\text{e}^{r_2x} \\ & y=(C_1+C_2x)\text{e}^{rx} \\ &y=\text{e}^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x) \\ \end{aligned} y+py+qy=0y=C1er1x+C2er2xy=(C1+C2x)erxy=eαx(C1cosβx+C2sinβx)

二阶常系数非齐次线性微分方程

y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x)
对于微分方程
f ( x ) = e λ x P m ( x ) f(x)=\text{e}^{\lambda x}P_m(x) f(x)=eλxPm(x)
特解满足形式
y ∗ = x k R m ( x ) e λ x y^*=x^kR_m(x)\text{e}^{\lambda x} y=xkRm(x)eλx
其中 R m ( x ) R_m(x) Rm(x)是与 P m ( x ) P_m(x) Pm(x)同次的多项式,而 k k k λ \lambda λ不是特征方程的根、是特征方程的单根、复根,依次取0、1、2。n阶常系数非齐次线性微分方程中, k k k λ \lambda λ的重复次数。
对于微分方程
f ( x ) = e λ x [ P l ( x ) cos ⁡ ω x + Q n ( x ) sin ⁡ ω x ] f(x)=\text{e}^{\lambda x}[P_l(x)\cos\omega x+Q_n(x)\sin\omega x] f(x)=eλx[Pl(x)cosωx+Qn(x)sinωx]
特解满足形式
y ∗ = x k e λ x [ R m ( 1 ) ( x ) cos ⁡ ω x + R m ( 2 ) ( x ) sin ⁡ ω x ] y^*=x^k\text{e}^{\lambda x}[R_m^{(1)}(x)\cos\omega x+R_m^{(2)}(x)\sin\omega x] y=xkeλx[Rm(1)(x)cosωx+Rm(2)(x)sinωx]
其中 R m ( 1 ) ( x ) R_m^{(1)}(x) Rm(1)(x) R m ( 2 ) ( x ) R_m^{(2)}(x) Rm(2)(x)是m次多项式, m = max ⁡ { l , n } m=\max\{l,n\} m=max{l,n} k k k λ + ω i \lambda+\omega i λ+ωi(或 λ − ω i \lambda-\omega i λωi)不是特征方程的根是特征方程的单根分别取0或1。

欧拉方程

x = e t x=\text{e}^t x=et t = ln ⁡ x t=\ln x t=lnx
∑ i = 1 n x i y ( i ) = f ( x ) d y d x = 1 x d y d t d 2 y d x 2 = 1 x 2 ( d 2 y d t 2 − d y d t ) d 3 y d x 3 = 1 x 3 ( d 3 y d t 3 − 3 d 2 y d t 2 + 2 d y d t ) x y ′ = D y x 2 y ′ ′ = D ( D − 1 ) y x 3 y ′ ′ ′ = D ( D − 1 ) ( D − 2 ) y \sum_{i=1}^nx^iy^{(i)}=f(x) \\ \frac{\text{d}y}{\text{d}x}=\frac{1}{x}\frac{\text{d}y}{\text{d}t} \\ \frac{\text{d}^2y}{\text{d}x^2}=\frac{1}{x^2}(\frac{\text{d}^2y}{\text{d}t^2}-\frac{\text{d}y}{\text{d}t}) \\ \frac{\text{d}^3y}{\text{d}x^3}=\frac{1}{x^3}(\frac{\text{d}^3y}{\text{d}t^3}-3\frac{\text{d}^2y}{\text{d}t^2}+2\frac{\text{d}y}{\text{d}t}) \\ xy'=\text{D}y \\ x^2y''=\text{D}(\text{D}-1)y \\ x^3y'''=\text{D}(\text{D}-1)(\text{D}-2)y i=1nxiy(i)=f(x)dxdy=x1dtdydx2d2y=x21(dt2d2ydtdy)dx3d3y=x31(dt3d3y3dt2d2y+2dtdy)xy=Dyx2y=D(D1)yx3y=D(D1)(D2)y

级数

正项级数

a n ≤ b n a_n\le b_n anbn b n b_n bn收敛,则 a n a_n an收敛。
a n ≥ b n a_n\ge b_n anbn b n b_n bn发散,则 a n a_n an发散。
l = lim ⁡ n → ∞ a n b n l=\displaystyle\lim_{n\to\infty}\frac{a_n}{b_n} l=nlimbnan
0 < l < + ∞ 0<l<+\infty 0<l<+,则 a n a_n an b n b_n bn敛散性相同。
l = 0 l=0 l=0 b n b_n bn收敛,则 a n a_n an收敛。
l = + ∞ l=+\infty l=+ b n b_n bn发散,则 a n a_n an发散。
ρ = lim ⁡ n → ∞ a n + 1 a n \rho=\displaystyle\lim_{n\to\infty}\frac{a_{n+1}}{a_n} ρ=nlimanan+1 ρ < 1 \rho<1 ρ<1时收敛, ρ > 1 \rho>1 ρ>1时发散。
ρ = a n n \rho=\sqrt[n]{a_n} ρ=nan ρ < 1 \rho<1 ρ<1时收敛, ρ > 1 \rho>1 ρ>1时发散。

p级数

1 + 1 2 p + 1 3 p + 1 4 p + ⋯ + 1 n p 1+\frac{1}{2^p}+\frac{1}{3^p}+\frac{1}{4^p}+\cdots+\frac{1}{n^p} 1+2p1+3p1+4p1++np1
其中 p > 0 p>0 p>0 p ≤ 1 p\le1 p1时发散。

交错级数

∑ n = 0 ∞ ( − 1 ) n u n \sum_{n=0}^{\infty}(-1)^{n} u_{n} n=0(1)nun
u n ≥ u n + 1 u_n\ge u_{n+1} unun+1 lim ⁡ n → ∞ u n = 0 \displaystyle\lim_{n\to\infty}u_n=0 nlimun=0则交错级数收敛。
对于一般的级数
u 1 + u 2 + ⋯ + u n u_1+u_2+\cdots+u_n u1+u2++un
如果级数 ∣ u n ∣ |u_n| un收敛则称 u n u_n un绝对收敛,如果级数 ∣ u n ∣ |u_n| un发散但 u n u_n un收敛则称 u n u_n un条件收敛。 u n u_n un绝对收敛是 u n u_n un收敛的充分不必要条件。

幂级数

∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} n=0anxn=a0+a1x+a2x2++anxn

傅里叶级数

f ( t ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n Ω t + ∑ n = 1 ∞ b n sin ⁡ n Ω t a n = 2 T ∫ − T 2 T 2 f ( t ) cos ⁡ n Ω t d t b n = 2 T ∫ − T 2 T 2 f ( t ) sin ⁡ n Ω t d t f ( t ) = ∑ n = − ∞ ∞ F n e j n Ω t F n = 1 T ∫ − T 2 T 2 f ( t ) e − j n Ω t d t \begin{aligned} & f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}a_n\cos n\Omega t+\sum_{n=1}^{\infty}b_n\sin n\Omega t \\ & a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\cos n\Omega t\text{d}t \\ & b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\sin n\Omega t\text{d}t \\ & f(t)=\sum_{n=-\infty}^{\infty}F_n\text{e}^{jn\Omega t} \\ & F_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)\text{e}^{-jn\Omega t}\text{d}t \end{aligned} f(t)=2a0+n=1ancosnΩt+n=1bnsinnΩtan=T22T2Tf(t)cosnΩtdtbn=T22T2Tf(t)sinnΩtdtf(t)=n=FnejnΩtFn=T12T2Tf(t)ejnΩtdt
其中 T T T为周期, Ω = 2 π T \Omega=\frac{2\pi}{T} Ω=T2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值