特征模型(3)证明全系数之和等于1

摘要 证明线性系统的特征模型的系数之和为1,使用直接离散化方法。
专栏全部文章见 基于特征模型的全系数自适应控制

引言

  被控对象用微分方程
y ( n ) = a n − 1 y ( n − 1 ) + ⋯ + a 0 y + b n − 1 u ( n − 1 ) + ⋯ + b 0 u (1) y^{(n)}=a_{n-1}y^{(n-1)}+\cdots+a_0y+b_{n-1}u^{(n-1)}+\cdots+b_0u\tag{1} y(n)=an1y(n1)++a0y+bn1u(n1)++b0u(1)
描述,其相应的差分方程为
y ( k ) = α 1 y ( k − 1 ) + ⋯ + α n y ( k − n ) + β 1 u ( k − 1 ) + ⋯ + β n u ( k − n ) (2) y(k)=\alpha_1y(k-1)+\cdots+\alpha_ny(k-n) +\beta_1u(k-1)+\cdots+\beta_nu(k-n)\tag{2} y(k)=α1y(k1)++αny(kn)+β1u(k1)++βnu(kn)(2)
对应的系统拉氏变换和z变换分别为
G ( s ) = b n − 1 s n − 1 + ⋯ + b 1 s + b 0 s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 G ( z ) = β 1 z − 1 + ⋯ + β n − 1 z n − 1 + β n z − n 1 − α 1 z − 1 − ⋯ − α n − 1 z n − 1 − α n z − n \begin{aligned} G(s) =& \frac{b_{n-1}s^{n-1}+\cdots+b_1s+b_0}{s^n+a_{n-1}s^{n-1}+\cdots+a_1s+a_0} \\ G(z) =& \frac{\beta_1z^{-1}+\cdots+\beta_{n-1}z^{n-1}+\beta_nz^{-n}} {1-\alpha_1z^{-1}-\cdots-\alpha_{n-1}z^{n-1}-\alpha_nz^{-n}} \\ \end{aligned} G(s)=G(z)=sn+an1sn1++a1s+a0bn1sn1++b1s+b01α1z1αn1zn1αnznβ1z1++βn1zn1+βnzn
式(2)中的 α \alpha α β \beta β 参数在下面两种情况下等于或近似等于1。

第一种情况

  系统静态增益 D = b 0 / a 0 D=b_0/a_0 D=b0/a0,则差分方程系数之间满足
∑ i = 1 n a i + b 0 a 0 ∑ i = 0 n − 1 β i = 1 \sum_{i=1}^na_i+\frac{b_0}{a_0}\sum_{i=0}^{n-1}\beta_i=1 i=1nai+a0b0i=0n1βi=1
且当 b 0 / a 0 = 1 b_0/a_0=1 b0/a0=1 时,所有系数之和为1。
  证明:拉氏变换和z变换的终值定理分别为,当终值存在时,
f s ( ∞ ) = lim ⁡ s → 0 s F ( s ) f z ( ∞ ) = lim ⁡ z → 1 ( z − 1 ) F ( z ) \begin{aligned} f_s(\infty) =& \lim_{s\rightarrow 0}sF(s) \\ f_z(\infty) =& \lim_{z\rightarrow 1}(z-1)F(z) \\ \end{aligned} fs()=fz()=s0limsF(s)z1lim(z1)F(z)
阶跃信号的拉氏变换和z变换分别为
U ( s ) = 1 s , U ( z ) = 1 1 − z − 1 U(s) = \frac{1}{s},U(z) = \frac{1}{1-z^{-1}} U(s)=s1,U(z)=1z11
所以连续系统和离散系统的终值分别为
f s ( ∞ ) = lim ⁡ s → 0 s U ( s ) G ( s ) = b 0 a 0 f z ( ∞ ) = lim ⁡ s → 0 ( z − 1 ) U ( z ) G ( z ) = ∑ β i 1 − ∑ α i \begin{aligned} f_s(\infty) =& \lim_{s\rightarrow 0}sU(s)G(s)=\frac{b_0}{a_0} \\ f_z(\infty) =& \lim_{s\rightarrow 0}(z-1)U(z)G(z) =\frac{\sum\beta_i}{1-\sum\alpha_i} \\ \end{aligned} fs()=fz()=s0limsU(s)G(s)=a0b0s0lim(z1)U(z)G(z)=1αiβi
当终值 f z ( ∞ ) = f s ( ∞ ) = b 0 a 0 = 1 f_z(\infty)=f_s(\infty)=\frac{b_0}{a_0}=1 fz()=fs()=a0b0=1 时, ∑ α i + ∑ β i = 1 \sum\alpha_i+\sum\beta_i=1 αi+βi=1

第二种情况

  采样周期 Δ t → 0 \Delta t\rightarrow 0 Δt0,且 a 0 , b 0 a_0,b_0 a0,b0 为有限值,则所有参数的和
lim ⁡ Δ t → 0 ∑ α i + ∑ β i = lim ⁡ Δ t → 0 [ 1 + ( 1 + D ) ( Δ t T ′ ) n ] = 1 \lim_{\Delta t\rightarrow 0}\sum\alpha_i+\sum\beta_i =\lim_{\Delta t\rightarrow 0}\left[1+(1+D) \left(\frac{\Delta t}{T'}\right)^n\right]=1 Δt0limαi+βi=Δt0lim[1+(1+D)(TΔt)n]=1
其中 T ′ T' T 为等效时间常数,且 a 0 = ( 1 T ′ ) n a_0=(\frac{1}{T'})^n a0=(T1)n
  证明:当 Δ t → 0 \Delta t\rightarrow 0 Δt0 时,将微分方程使用一阶差分法离散化
y ˙ ( t ) = y ( k ) − y ( k − 1 ) Δ t y ¨ ( t ) = y ( k ) − 2 y ( k − 1 ) + y ( k − 2 ) ( Δ t ) 2 y ( 3 ) ( t ) = y ( k ) − 3 y ( k − 1 ) + 3 y ( k − 2 ) − y ( k − 3 ) ( Δ t ) 3 ⋮ y ( n ) ( t ) = ∑ i = 0 n ( − 1 ) i C n i y ( k − i ) ( Δ t ) n \begin{aligned} \dot{y}(t) =& \frac{y(k)-y(k-1)}{\Delta t} \\ \ddot{y}(t) =& \frac{y(k)-2y(k-1)+y(k-2)}{(\Delta t)^2} \\ y^{(3)}(t) =& \frac{y(k)-3y(k-1)+3y(k-2)-y(k-3)}{(\Delta t)^3} \\ \vdots& \\ y^{(n)}(t) =& \frac{\displaystyle\sum_{i=0}^n(-1)^iC_n^iy(k-i)} {(\Delta t)^n} \\ \end{aligned} y˙(t)=y¨(t)=y(3)(t)=y(n)(t)=Δty(k)y(k1)(Δt)2y(k)2y(k1)+y(k2)(Δt)3y(k)3y(k1)+3y(k2)y(k3)(Δt)ni=0n(1)iCniy(ki)
分子的各系数呈杨辉三角。将上述关系代入式(1)得(先以二阶系统为例)
y ¨ = a 1 y ˙ + a 0 y + b 1 u ˙ + b 0 u y ( k ) − 2 y ( k − 1 ) + y ( k − 2 ) ( Δ t ) 2 = a 1 y ( k − 1 ) − y ( k − 2 ) Δ t + a 0 y ( k − 2 ) + b 1 u ( k − 1 ) − u ( k − 2 ) Δ t + b 0 u ( k − 2 ) \begin{aligned} & \ddot{y} = a_1\dot{y}+a_0y+b_1\dot{u}+b_0u \\ & \frac{y(k)-2y(k-1)+y(k-2)}{(\Delta t)^2} = a_1\frac{y(k-1)-y(k-2)}{\Delta t} +a_0y(k-2)+b_1\frac{u(k-1)-u(k-2)}{\Delta t}+b_0u(k-2) \\ \end{aligned} y¨=a1y˙+a0y+b1u˙+b0u(Δt)2y(k)2y(k1)+y(k2)=a1Δty(k1)y(k2)+a0y(k2)+b1Δtu(k1)u(k2)+b0u(k2)
y ( k ) = 2 y ( k − 1 ) − y ( k − 2 ) + a 1 [ y ( k − 1 ) − y ( k − 2 ) ] Δ t + b 1 [ u ( k − 1 ) − u ( k − 2 ) ] Δ t + [ a 0 y ( k − 2 ) + b 0 u ( k − 2 ) ] ( Δ t ) 2 = ( a 1 Δ t + 2 ) y ( k − 1 ) + ( a 0 Δ 2 t − a 1 Δ t − 1 ) y ( k − 2 ) + b 1 Δ t u ( k − 1 ) + ( b 0 Δ 2 t − b 1 Δ t ) u ( k − 2 ) = α 1 y ( k − 1 ) + α 2 y ( k − 2 ) + β 1 u ( k − 1 ) + β 2 u ( k − 2 ) \begin{aligned} y(k) =& 2y(k-1)-y(k-2)+a_1[y(k-1)-y(k-2)]\Delta t +b_1[u(k-1)-u(k-2)]\Delta t+[a_0y(k-2)+b_0u(k-2)](\Delta t)^2 \\ =& (a_1\Delta t+2)y(k-1) +(a_0\Delta^2t-a_1\Delta t-1)y(k-2) +b_1\Delta tu(k-1) +(b_0\Delta^2t-b_1\Delta t)u(k-2) \\ =& \alpha_1y(k-1)+\alpha_2y(k-2)+\beta_1u(k-1)+\beta_2u(k-2) \end{aligned} y(k)===2y(k1)y(k2)+a1[y(k1)y(k2)]Δt+b1[u(k1)u(k2)]Δt+[a0y(k2)+b0u(k2)](Δt)2(a1Δt+2)y(k1)+(a0Δ2ta1Δt1)y(k2)+b1Δtu(k1)+(b0Δ2tb1Δt)u(k2)α1y(k1)+α2y(k2)+β1u(k1)+β2u(k2)
∑ α i + ∑ β i = ( a 1 Δ t + 2 ) + ( a 0 Δ 2 t − a 1 Δ t − 1 ) + b 1 Δ t + ( b 0 Δ 2 t − b 1 Δ t ) = ( a 0 + b 0 ) Δ 2 t + 2 − 1 lim ⁡ Δ t → 0 ∑ α i + ∑ β i = 1 \begin{aligned} \sum\alpha_i+\sum\beta_i =& (a_1\Delta t+2)+(a_0\Delta^2t-a_1\Delta t-1)+b_1\Delta t +(b_0\Delta^2t-b_1\Delta t) \\ =& (a_0+b_0)\Delta^2t+2-1 \\ \lim_{\Delta t\rightarrow 0}\sum\alpha_i+\sum\beta_i =& 1 \end{aligned} αi+βi==Δt0limαi+βi=(a1Δt+2)+(a0Δ2ta1Δt1)+b1Δt+(b0Δ2tb1Δt)(a0+b0)Δ2t+211
可见不包含 Δ t \Delta t Δt 的一阶项。再推广到n阶,省略包含 Δ t \Delta t Δt 的高阶项
y ( k ) = ∑ i = 1 n ( − 1 ) i C n i y ( k − i ) + a n − 1 Δ t ( ∑ i = 0 n − 1 ( − 1 ) i C n i y ( k − i ) ) + a n − 2 Δ 2 t ( ∑ i = 0 n − 2 ( − 1 ) i C n i y ( k − i ) ) + ⋯ + b n − 1 Δ t ( ∑ i = 0 n − 1 ( − 1 ) i C n i u ( k − i ) ) + b n − 2 Δ 2 t ( ∑ i = 0 n − 2 ( − 1 ) i C n i u ( k − i ) ) \begin{aligned} y(k) =& \sum_{i=1}^n(-1)^iC_n^iy(k-i) +a_{n-1}\Delta t\left(\sum_{i=0}^{n-1}(-1)^iC_n^iy(k-i)\right) +a_{n-2}\Delta^2t\left(\sum_{i=0}^{n-2}(-1)^iC_n^iy(k-i)\right) \\ &+\cdots+b_{n-1}\Delta t\left(\sum_{i=0}^{n-1}(-1)^iC_n^iu(k-i)\right) +b_{n-2}\Delta^2t\left(\sum_{i=0}^{n-2}(-1)^iC_n^iu(k-i)\right) \\ \end{aligned} y(k)=i=1n(1)iCniy(ki)+an1Δt(i=0n1(1)iCniy(ki))+an2Δ2t(i=0n2(1)iCniy(ki))++bn1Δt(i=0n1(1)iCniu(ki))+bn2Δ2t(i=0n2(1)iCniu(ki))
进一步观察得到杨辉三角各行元素的和为0,而第一个元素为1,所以等号右边第一项的系数和 ∑ i = 1 n ( − 1 ) i C n i = 1 \displaystyle\sum_{i=1}^n(-1)^iC_n^i=1 i=1n(1)iCni=1,剩下的每一项中的系数都是完整的杨辉三角中的一行,系数和都是0,只剩下杨辉三角第一行的 a 0 y ( k − n ) Δ n t a_0y(k-n)\Delta^nt a0y(kn)Δnt b 0 u ( k − n ) Δ n t b_0u(k-n)\Delta^nt b0u(kn)Δnt,都是 Δ t \Delta t Δt 的高阶小量,可以忽略。
  这种推导方法用的是欧拉离散化方法,特征模型(1)简介 文末的第一个参考文献证明了用其他方法离散化的系数和也是1。
  根据微分方程系数 a i a_i ai 与极点 p i p_i pi、一阶系统的时间常数 T i T_i Ti 的关系可以知道,当 a 0 ≠ 0 a_0 \neq 0 a0=0
a 0 = ∏ i = 1 n − p i = ∏ i = 1 n 1 T i > 0 a_0 = \prod_{i=1}^n-p_i=\prod_{i=1}^n \frac{1}{T_i}>0 a0=i=1npi=i=1nTi1>0
举个例子,
G ( s ) = 1 ( s + 2 ) ( s + 3 ) = 1 s 2 + 5 s + 6 = 1 s 2 + a 1 s + a 0 G(s)=\frac{1}{(s+2)(s+3)}=\frac{1}{s^2+5s+6}=\frac{1}{s^2+a_1s+a_0} G(s)=(s+2)(s+3)1=s2+5s+61=s2+a1s+a01
其中极点为 p 1 = − 2 , p 2 = − 3 p_1=-2,p_2=-3 p1=2,p2=3 a 0 = 6 a_0=6 a0=6 T i = 1 2 . 1 3 T_i=\frac 12.\frac 13 Ti=21.31
定义等效时间常数
T ′ = ∏ i = 1 n T i n T'=\sqrt[n]{\prod_{i=1}^n T_i} T=ni=1nTi
于是有 a 0 = ( 1 T ′ ) n a_0=\displaystyle\left(\frac{1}{T'}\right)^n a0=(T1)n,又因为 b 0 / a 0 = D b_0/a_0=D b0/a0=D 为等效静态增益,所以如果不忽略 Δ t \Delta t Δt 的两个高阶小量,则
∑ i = 1 n α i + ∑ i = 0 n − 1 β i = 1 + a 0 Δ n t + b 0 Δ n t = 1 + a 0 ( 1 + D ) Δ n t = 1 + ( 1 + D ) ( Δ t T ′ ) n \begin{aligned} \sum_{i=1}^n \alpha_i+\sum_{i=0}^{n-1} \beta_i =& 1+a_0\Delta^nt+b_0\Delta^nt \\ =& 1+a_0(1+D)\Delta^nt \\ =& 1+(1+D)\left(\frac{\Delta t}{T^{\prime}}\right)^n \\ \end{aligned} i=1nαi+i=0n1βi===1+a0Δnt+b0Δnt1+a0(1+D)Δnt1+(1+D)(TΔt)n

全系数之和等于1的作用

由于引入全系数之和等于1的算法,从而可以推出一组新的参数递推算法,这在工程上解决了自校正调节器需事先一次性确定一个输入系数 β 0 \beta_0 β0 的问题,并简化了复杂的算法。在理论上解决了线性闭环反馈控制时参数辨识不唯一性的问题。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值