神经网络学习随笔1

1. 任何非输入输出层都被称为隐藏层。

2. 参数和权重是一种意思。

3. 从输入层到隐藏层,再到输出层叫做前向传播。

4. 神经网络算法优化代价函数的方法有反向传播算法。重新学习反向传播算法。

5. 为了训练神经网络,首先要将权重随机初始化一个接近0的,范围在-e到e之间的数,然后进行反向传播,再进行梯度检验,最后使用梯度下降,或者其他高级优化算法,来最小化代价函数J,这个关于参数theta的函数,整个过程从为参数选取一个随机初始化的值开始,这是一种打破对称性的流程,随后,通过梯度下降,或者其他高级优化算法,就能计算出参数theta的最优值。

6. 训练神经网络的过程:选择一个神经网络结构(输入单元是特征的维数,输出单元是要分的类别数,隐藏单元首选一层,如果选择多层,则每层的小单元个数最好一样)

    构建一个神经网络,随机初始化权重 → 执行前向传播算法得到预测值 → 通过代码计算出代价函数 → 执行反向传播算法计算出偏导数项 → 使用梯度检测将已经计算出的偏导数项和用数值方法计算出的值进行比较,检测是否接近,再停用梯度检测 → 再用高级优化算法和反向传播算法结合最小化代价函数

7. 一般将数据集分为训练集,验证集和测试集,比例为60%,20%,20%,交叉验证集是为了评估泛化误差。

8. 欠拟合问题对应高偏差,训练误差也大,且偏差大于误差;过拟合问题对应高方差,训练误差较低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值