10 ,正态分布,期望,方差 :

本文深入解析正态分布的公式与意义,探讨期望与方差的概念,并通过实例对比两个车间的产品质量,揭示方差在衡量数据稳定性中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 , 正态分布 :

  1. 公式 :
  2. 图 :
  3. 意义 :
    μ : 平均数
    derta : 标准差

2 ,期望 :

  1. 射手打中几环的概率 :
    在这里插入图片描述
  2. 期望 : 假设打 100 次,他大概能射中的平均分数是多少 ?
    在这里插入图片描述
  3. 总结 :
    期望 = 求和(次数i × 概率i) / 总次数
  4. 期望是否等于平均数 : 正态分布等于,非正态分布不等于
    在这里插入图片描述

3 ,方差 : ( 数据 - 期望 )^2 的加和

  1. 意义 : 数据的波动强度
  2. 例子 : 甲乙两个车间生产零件,产生次品的概率如下
    在这里插入图片描述
  3. 问 : 各自生产 1000 件商品,平均次品数,方差,哪个车间的产品质量好
    1 ,甲次品数,期望 : E(X) = 加和 ( 数量 × 概率 ) = 1.7
    2 ,乙次品数,期望 : E(Y) = 1.7
  4. 分析 : 期望一样,那就求方差,看他的波动
  5. 求方差 : ( 数据 - 期望 )^2
    在这里插入图片描述
  6. 哪个质量好 :
    方差小的比较稳定,所以 : 乙厂质量更好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值