Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree.
Example :
Input: root = [4,2,6,1,3,null,null]
Output: 1
Explanation:
Note that root is a TreeNode object, not an array.
The given tree [4,2,6,1,3,null,null] is represented by the following diagram:
4
/ \
2 6
/ \
1 3
while the minimum difference in this tree is 1, it occurs between node 1 and node 2, also between node 3 and node 2.
Note:
The size of the BST will be between 2 and 100.
The BST is always valid, each node’s value is an integer, and each node’s value is different.
思路
本题就是寻找两个节点最小的差值。
思路一:由于是BST,所以直接对树进行中序遍历,得到从小到大的序列之后,遍历相邻节点,求最小的差值。时间复杂度较高。
思路二:直接用递归,可以节省第二次遍历的时间,技巧是除了设置一个Min的值之外,再设置一个pre保存上一次遍历到的值,这样就可以求出两次递归之间的差值,仍然利用中序遍历。
思路一:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int min = INT_MAX;
vector<int>v;
int minDiffInBST(TreeNode* root) {
dfs(root);
for(int i=0;i<v.size()-1;i++){
min = (min>v[i+1]-v[i])?v[i+1]-v[i]:min;
}
return min;
}
void dfs(TreeNode* root){
if(!root)return;
dfs(root->left);
v.push_back(root->val);
dfs(root->right);
}
};
思路二:
/**
-
Definition for a binary tree node.
-
struct TreeNode {
-
int val;
-
TreeNode *left;
-
TreeNode *right;
-
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
-
};
*/
class Solution { public: int min1 = INT_MAX; int pre=-1; int minDiffInBST(TreeNode* root) { if(root->left){ minDiffInBST(root->left); } if(pre>=0)min1=min(min1,root->val-pre); pre = root->val; if(root->right){ minDiffInBST(root->right); } return min1; } };