语音识别基本架构
- W表示文字序列,Y表示语音的输入
- 那么根据公式1,表示语音识别的目标是 在给定语音输入的情况下,找到可能性最大的文字序列
- 根据贝叶斯公式,可以得到公式2,分母P(Y)表示出现这条语音的概率,对于我们的求解目标来说是一个常数,所以求解时忽略,得到公式3
- 公式3的P(Y|W)表示给定一个文字序列而出现这条音频的概率,成为声学模型。P(W)表示出现这个文字序列的概率,成为语言模型。
- 无论是传统的方法,或者深度学习网络的方法也是,目前的语音识别在架构上都没有脱离上面的公式。也就是说都是包括 声学模型和语言模型
声学模型 AM (Acoustic Model)
- 声学模型是对声音发声的建模,能够把语音输入转换成声学表示的输出,更准确的说是给出语音属于某个声学符号的概率。在英文中这个声学符号可以是音节或者是更小的颗粒度音素(phone),在中文中这个声学符号可以是声韵母或者是颗粒度筒英文一样小的音素。
CD-DNN-HMM模型
公式3的声学模型表示为下面的形式