语音识别基本原理学习

本文介绍了语音识别的基本原理,包括语音识别架构、声学模型AM(Acoustic Model)如CD-DNN-HMM和CTC模型,以及语言模型LM在解决多音字问题和解码约束中的作用。声学模型利用HMM或RNN描述语音和状态之间的转换,而CTC模型实现了直接将语音映射到文字的End-to-End建模。
摘要由CSDN通过智能技术生成

语音识别基本架构

在这里插入图片描述

  • W表示文字序列,Y表示语音的输入
  • 那么根据公式1,表示语音识别的目标是 在给定语音输入的情况下,找到可能性最大的文字序列
  • 根据贝叶斯公式,可以得到公式2,分母P(Y)表示出现这条语音的概率,对于我们的求解目标来说是一个常数,所以求解时忽略,得到公式3
  • 公式3的P(Y|W)表示给定一个文字序列而出现这条音频的概率,成为声学模型。P(W)表示出现这个文字序列的概率,成为语言模型
  • 无论是传统的方法,或者深度学习网络的方法也是,目前的语音识别在架构上都没有脱离上面的公式。也就是说都是包括 声学模型语言模型

声学模型 AM (Acoustic Model)

  • 声学模型是对声音发声的建模,能够把语音输入转换成声学表示的输出,更准确的说是给出语音属于某个声学符号的概率。在英文中这个声学符号可以是音节或者是更小的颗粒度音素(phone),在中文中这个声学符号可以是声韵母或者是颗粒度筒英文一样小的音素。

CD-DNN-HMM模型

公式3的声学模型表示为下面的形式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值