【TensorFlow实战】用TensorFlow实现简单的卷积神经网络

#本次将练习实现一个简单的卷积神经网络,使用的数据集依然是MNIST,
#预期可以达到99.2%左右的准确性
#使用两个卷积层加上一个全连接蹭构建一个简单但是非常具有代表性的卷积神经网络
#载入MNIST数据集,并且创建默认的Interactive Session
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#载入本地数据
mnist = input_data.read_data_sets("MNIST_data/",one_hot=True)
sess = tf.InteractiveSession()
#接下来要实现的这个卷积神经网络会有很多的权重和偏置需要创建,
#因此我们先定义好初始化函数以便于重复使用
#我们需要给权重制造一些随机的噪声来打破完全对称,比如截断的正态分布噪声
#标准差设为0.1
#同时因为我们使用ReLU
#也给偏置增加一些小的正值(0.1),用来避免死亡节点

#ReLU  用于隐层神经元输出
#  F(x) = max(0,x)
#当输入值小于0,就等于0,当大于0,就等于输入值

#权重
def weight_variable(shape):
    #tf.truncated_normal(shape, mean, stddev) :shape表示生成张量的
    # 维度,mean是均值,stddev是标准差。
    # 这个函数产生正太分布
    # ,均值和标准差自己设定。这是一个截断的产生正太分布的函数,
    # 就是说产生正太分布的值如果与均值的差值大于两倍的标准差,
    # 那就重新生成。和一般的正太分布的产生随机数据比起来,
    # 这个函数产生的随机数
    # 与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能的。
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)

#偏置
def bias_variable(shape):
    #tf.constant 常量
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

#卷积层、池化层也是接下来要重复使用的,因此也为他们分别定义创建函数。
#这里的tf.nn.conv2d是TensorFlow中的2维卷积函数,参数中x是输入,
#W是卷积的参数,比如[5,5,1,32]:全两个数字代表卷积核的尺寸,第三个数字代表有多少个channel
#因为我们只有灰度单色,所以是1,如果是彩色的RGB图片,这里应该是3
#最后一个数字代表卷积核的数量,也就是这个卷积层会提取多少嘞的特征,
#strides 代表卷积模板移动的步长,都是1代表会不遗漏地划过图片的每一个点。
#padding代表边界的处理方式,这里的SAME代表个边界加上Padding让卷积的输出和输入保持同样的尺寸

def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')


#tf.nn.max_pool是TensorFlow中的最大池化函数,我们这里使用2X2的最大池划,
#将一个2x2的像素块降为1x1的像素。最大池化会保留原始像素块中灰度值最高的那个像素
#就是保留最显著的特征。
#因为希望整体上缩小图片尺寸,因此池化层的strides也社会横竖两个方向以2为步长。
#如果步长还是1,那么我们会得到一个尺寸不变的图片

def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],
                          padding='SAME')

#在正式设计卷积神经网络的结构之前,先定义输入的placeholder,x是特征
#y_是真实的label

#因为卷积神经网络会利用到空间结构信息,因此需要将1D的输入向量转为2D的
#图片结构,即从1x784的形式转为原始的28x28的结构。
#同时因为只有一个颜色通道,所以最终尺寸为[-1,28,28,1],前面的-1代表样本数量不固定
#最后的1代表颜色通道数量。
#这里我们使用的tensor变形函数是tf.reshape
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1])

#接下来定义我们的第一个卷积层,我们先使用前面写好的函数进行参数初始化
#包括weights和bias,这里的[5,5,1,32]代表卷积核尺寸为5x5,1个颜色通道,32个不同的卷积核
#然后使用conv2d进行卷积操作,并且加上偏置
#接着再使用ReLU激活函数进行非线性处理。
#最后,使用最大池化函数max_pool_2x2对卷积的输出结果进行池划操作
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv)


#现在定义第二个卷积层,这个卷积层基本和第一个卷积层一样,唯一的不同是
#卷积核数量变成了64,也就是说这一层的卷积会提取64中特征
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#因为前面经历两次步长为2x2的最大池化,所以边长已经只有1/4了
#图片尺寸由28x28 变成了7x7
#而第二个卷积层的卷积核数量为64
#其输出的tensor尺寸即为7x7x64
#我们使用tf.reshape 函数对第二个卷积层的输出tensor进行变形
#将其转成1D的向量
#然后连接一个全连接层,隐含节点为1024 并且使用ReLU激活函数
W_fc1 = weight_variable([7*7*64,1024])
b_fc1 = bias_variable([1024])
h_pool2_flat  = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)

#为了减轻过拟合,下面使用一个Dropout层,Dropout的用法第四章已经讲过
#是通过一个placeholder传入keep_prob比率来控制的
#在训练时,我们随机丢弃一部分节点的数据来减轻过拟合,
#预测时则保留全部数据来追求最好的预测性能
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

#最后我们将Dropout层的输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)

#我们定义损失函数为cross_entropy
#和之前一样,但是优化器使用Adam,并给予一个较小的学习速率1e-4
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),
                                              reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#再继续定义评测准确率的操作
correcct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correcct_prediction,tf.float32))

#下面开始训练过程,首先依然是初始化所有参数
#设置训练时Dropout的keep_prob比率为0.5
#然后使用大小为50的mini_batch,共进行20000次训练迭代
#参与训练的样本数量总共为100万,
#其中为100次训练,我们会对准确率进行一次评测
#评测时keep_prob设为1
#用以实时监测模型的性能

tf.global_variables_initializer().run()
for i in range(2000):
    batch  =  mnist.train.next_batch(50)
    if i%10 == 0:
        #feed_dict 用来传值
        train_accuracy = accuracy.eval(feed_dict = {x:batch[0],
                                                    y_:batch[1],
                                                    keep_prob:1.0})
        print("step%d,training accuracy %g"%(i,train_accuracy))
    train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})

#全部训练完成之后,我们在最终的测试集上进行全面的测试,得到整体的分类准确率
print("text accuray%g"%accuracy.eval(feed_dict={
    x:mnist.test.images,y_:mnist.test.lables,keep_prob:1.0
}))

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值