【一】CNN 如何理解图像 卷积 and 反卷积 图像纹理 - 可以是底层网络的一组特征 图像内容 - 可以是深层网络的一组特征 【二】CNN 风格迁移 CNN视角:内容 and 风格 是可以被 独立实现 的 【损失函数】内容:用距离表示 【损失函数】风格:Gram Matrices (通道)G = V.T * V (正相关:接近 1; 负相关:接近 -1; 不相关:接近 0) 将 内容 and 风格 的 损失函数 结合起来 优化的是图片的 像素,而不是网络的 参数 【三】生成模型 - 详细见后面章节(07) 直接由 特征向量,通过 反卷积 等操作,生成一张图片