
吴恩达
文章平均质量分 83
YuQiao0303
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[吴恩达深度学习笔记]L5W3 序列模型和注意力机制(Sequence models & Attention mechanism)
目录3.1 基础模型(Basic Models)3.1 基础模型(Basic Models)原创 2022-03-23 16:30:36 · 328 阅读 · 1 评论 -
关于一维和二维卷积,以及1*1卷积核的理解
本文图片大部分来自吴恩达Andrew Ng老师的深度学习课程。基础操作:最基本的卷积操作是把卷积核在输入中移动(扫一遍),获得输出。维度:一维卷积和二维卷积的维度是指,输入数据的维度,比如一维的只有长度(如文本,第一个单词第二个单词),二维的有长宽(如图像,横纵分布的像素矩阵)。一维卷积的卷积核在一维方向上移动(如文本,第一个单词第二个单词);二维卷积的卷积核在二维方向上移动(比如图像从左到右从上到下)channel:在此基础上,输入可以有不同channel。(例原创 2021-09-15 11:10:00 · 11569 阅读 · 0 评论 -
[个人笔记]吴恩达深度学习lesson5 week1序列模型
这是一篇个人向的笔记。推荐学习顺序:(可选)最好掌握线性代数、微积分、概率论的一些基本知识学习吴恩达机器学习课程学习吴恩达深度学习的前4课(也可以选择性学习部分内容)然后可以学习本课,即吴恩达深度学习第五课的第一周内容本课程视频本课程文字版目录1.1 为什么选择序列模型?(Why Sequence Models?)1.2 数学符号(Notation)1.3 循环神经网络模型(Recurrent Neural Network Model)1.1 为什么选择序列模型?(Why Sequen原创 2021-03-23 20:46:12 · 791 阅读 · 0 评论 -
[个人笔记]吴恩达深度学习lesson5 week2自然语言处理与词嵌入(Natural Language Processing and Word Embeddings)
这是一篇个人向的笔记。推荐学习顺序:(可选)最好掌握线性代数、微积分、概率论的一些基本知识学习吴恩达机器学习课程学习吴恩达深度学习的前4课(也可以选择性学习部分内容)即第五课第一周然后可以学习本课,即吴恩达深度学习第五课的第二周内容本课程视频本课程文字版目录2.1 词汇表征(Word Representation)2.1 词汇表征(Word Representation)...原创 2021-07-04 17:59:12 · 233 阅读 · 0 评论 -
[个人笔记]吴恩达深度学习L3 W2:机器学习策略(2)(ML Strategy (2))
http://www.ai-start.com/dl2017/html/lesson3-week2.html#header-n1252.7 迁移学习(Transfer learning)迁移学习:把网络从任务甲中学的的知识(参数)用于任务乙。举例:已经训练好一个识别猫和狗(任务甲)的网络,现在想做X射线扫描图分类(任务乙)操作:首先完全重新初始化最后一层,然后开始训练:如果你的放射科数据集很小,你可能只需要重新训练最后一两层的权重,就是和并保持其他参数不变。如果你有足够多的数据,你可以重新原创 2021-07-04 17:58:34 · 142 阅读 · 0 评论