
读论文
文章平均质量分 83
YuQiao0303
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
[读论文]meshGPT
ShapeNetV2, 所有55个categories来train GPT;但在chair,table,bench和lamp这四个类别上finetune。AutoEncoder用了2 A100, 2 days。transformer用了4 A100, 5 days。原创 2023-12-01 17:33:52 · 3358 阅读 · 0 评论 -
[读论文](StyleGAN) A Style-Based Generator Architecture for Generative Adversarial Networks
重点是提出两个指标:Perceptual path length和linear separability提出一种GAN的generator 架构(按分辨率coarse to fine的)不将z作为网络的输入,而是将learned constant + scaled noise作为输入,将z处理后作为style,即instance normalization(AdaIN)的scale和bias;style的获得。原创 2023-02-08 16:22:06 · 3670 阅读 · 0 评论 -
[读论文] (MeshInversion)Monocular 3D Object Reconstruction with GAN inversion (ECCV2022)
项目主页:https://www.mmlab-ntu.com/project/meshinversion/方法名称:MeshInversion输入:单目图像 (in the wild,有背景的,没有抠图的)输出:textured 3D meshkey challenge: 缺少3D或multiview supervision方法核心:先预训练一个3D GAN ,可以从latent code z生成textured mesh。然后在inference的时候,从输入的图片倒推最符合的z。(这是一个in原创 2022-12-05 21:07:45 · 3833 阅读 · 4 评论 -
[读论文]Point Scene Understanding via Disentangled Instance Mesh Reconstruction (DIMR)
暂未开源方法:2 stagestage 1: get instance输入:场景点云输出:(point-wise) semantic labels, instance center offsets, rotation angles方法:略stage 2: mesh reconstruction输出:(proposal wise) residual bounding boxes, confidence scores, latent distributions of complet meshes方法:原创 2022-07-11 10:05:29 · 357 阅读 · 0 评论 -
读论文:(nvdiffrec) Extracting Triangular 3D Models, Materials, and Lighting From Images
Project page: https://nvlabs.github.io/nvdiffrec/github项目名称叫 nvdiffrec整体看起来跟nurf一样是对单个物体(单个场景)训练的。输入: multi-view images, 相机位姿,背景分割mask(不知道光照情况)。输出: triangle meshes, texture, lighting输入: multi-view images, 相机位姿,背景分割mask(不知道光照情况)。输出: triangle meshes,原创 2022-07-06 15:23:43 · 4203 阅读 · 2 评论 -
[读论文]CVPR2019: Occupancy Networks: Learning 3D Reconstruction in Function Space
核心本文提出了一种3D图形的表示方法,并给出了得到他的网络架构和训练方法。用decision boundary 来表示物体的表面。这个方法贼好,放在2D类比,就像像素图和矢量图,矢量图是精度是无限的,但又不会耗费额外的内存。(对啊,早该想到啊,怎么会2019年才出来。。。既然2D可以有矢量图,3D就不能吗)具体一点,一个物体用一个occupancy function 来表示:注意,是实数空间,不是离散的按一定分辨率取样的。然后用一个神经网络来逼近这个函数,给每个实空间的3D点一个0-1之间原创 2021-11-03 19:23:25 · 14174 阅读 · 13 评论 -
基于体素的三维表面重建: DLGAN, 3D GAN,3D-R2N2等
输入:1或多张单个物体任意视角的图片 (encode成一个latent code)输出:3D occupancy grid (323232)loss: sum of voxel-wise 交叉熵。(虽然代码和这个有差别)官方代码:非官方torch代码:https://rohitgirdhar.github.io/GenerativePredictableVoxels/关于autoencoder的ablation study:第16页, table 2 (FIg.7 里面其实没有消融实验, su原创 2022-07-01 22:39:42 · 1930 阅读 · 0 评论 -
[读论文]DECOR-GAN
任务:粗略体素几何体的精细化输入:粗略体素几何体content作为content,精细体素几何体作为style输出:content的精细化,类似那个style。方法概述reconstruction loss 结果像style: 希望如果拿style降采样后的结果通过网络,可以生成style自己。Ld (discrininator的loss): 希望生成的结果中,原来有内容的体素,现在还是有内容。 用一个discrininator类似于把generator的结果降采样了,然后判断(降采样后为空的原创 2022-07-01 22:38:30 · 509 阅读 · 0 评论 -
[读论文] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV2020 Best Paper)
总览任务:view synthesis: 视图合成。即输入一些同一个静态3D场景的2D照片 with poses,输出任意其他角度的该场景2D图像。方法:用一个mlp网络来表示静态三维场景之后,可以从任意角度该场景渲染为2D图片(视图合成)。用神经辐射场NeRF来表示场景基本思路:从某个视角看这个场景,会看到其颜色。于是将场景表示为视角-颜色的对应关系。FΘ:(x,d)→(c,σ)F_{\Theta}:(\mathbf{x}, \mathbf{d}) \rightarrow(\m原创 2022-05-06 13:21:07 · 1350 阅读 · 0 评论 -
[读论文]Modeling polypharmacy side effect
本文是2020.12.02的笔记,于2022.03.08从本人onenote迁移到CSDN相关连接论文网站: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022705/#项目网站:http://snap.stanford.edu/decagon/github: https://github.com/mims-harvard/decagon论文内容Introduction多药合用(复方用药,polypharmacy)效果好。但增加了副作用的原创 2022-03-08 15:26:02 · 1563 阅读 · 2 评论 -
[读论文] SAP: Shape As Points: A Differentiable Poisson Solver
arxive论文链接bilibili:作者的讲解核心思想两个核心概念:可微泊松求解器:已知带法向的点云,求出其indicator function(每一点是是在外面还是在里面),继而可通过marching cube求出mesh。(实质是把泊松求解的过程可微化了)SAP:这样,带法向的点云配合可微泊松求解器,就可以作为一种3D shape的representation。比如,传统的neural implicit representation常用occupancy funciton作为3D原创 2022-01-13 11:16:29 · 1407 阅读 · 2 评论 -
KinectFusion 论文阅读笔记
参考:https://zhuanlan.zhihu.com/p/35894630目标实时输入RGBD视频流(用Kinect扫描仪获得)实时获得重建的mesh一些参数相机内参:相机坐标系中一点到像素平面的转换方程位姿估计pose estimation:相机坐标系到师姐坐标系的转换矩阵始终在更新全局的:点云,法向TSDF相机位姿流程Measurement (单帧求点云和法向)输入:一帧Kinect的RGBD图像,(相机内参已知)输出:vertex map(也就是点云图)V、nor原创 2021-12-21 17:39:13 · 639 阅读 · 0 评论 -
[读论文]点云表面重建: SDF, TSDF, MLS, RBF
本文是阅读以下论文的笔记:[1]密振兴, “基于深度学习的大规模点云表面重建算法研究,” 硕士, 华中科技大学, 2020.局部拟合算法在点的局部邻域内拟合隐式函数。就是说每个点的函数值之和自己的邻域有关。SDF, Signed Destance Function, 符号距离函数总结:到最邻近样本点切平面的有符号距离。输入:点云及其法向。SDF定义: R3R^3R3空间任意一点x,到其最近的样本点pi的距离,加上一个符号(法向为正,反之为负)图示:表面:φ的0等值面。缺点:对法向敏原创 2021-11-30 16:27:10 · 9789 阅读 · 2 评论 -
读论文 A search-classify approach for cluttered indoor scene understanding
基于RDF分类器的滑动增长分类:定义并计算了一些点云特征,训练了一个分类器(Randomized Decision Forest Classifier).Over Segment 场景:将整个场景分为一些patch。每个patch 是一些邻近的,发现平滑,距离不超过阈值的点。图中左一,每种颜色的点构成一个patch。计算邻接图G,图的节点是patch们;边的定义是如果两个patch的距离小于定值,就有边。图中左一。先随机选m个三patch组(patch triplets) . 每个triplets原创 2021-11-10 21:39:39 · 168 阅读 · 0 评论 -
[读论文]Review of Modelling and Simulating Crowds at Mass Gathering Events: Hajj as a Case Study
原论文链接本文是大规模聚集性事件的人群建模仿真综述,以朝觐为例。introduction1.1 什么是MG(Mass Gathering)1.2 hajj的简介和其人群管理的挑战1.3 本文组织结构Literature Search Framework文献综述按照 PRISMA guidelines来实施:The PRISMA framework or Preferred Reporting Items for Systematic Reviews and Meta-Analyses (原创 2021-09-03 22:02:21 · 190 阅读 · 0 评论 -
[读论文]CVPR 2021 | RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction
本文解决的问题:indoor scene construction: 输入室内点云,输出3D模型(instance 粒度)端到端Related work:Shape completion: 补全缺损的但各物体常用点层面的卷积,如pointNet等。Scene completion: 补全场景,主要挑战是物体相互遮挡inpaint depth frames: 深度图补全,常用2D CNNvoxel or TSDF grids 补全,常用3D CNN。instance reco原创 2021-09-02 22:22:22 · 962 阅读 · 2 评论 -
Zotero 报错:The update could not be installed. Please make sure there.. 解决办法记录
报错信息如下:The update could not be installed. Please make sure there are no other copies of Zotero running on your computer, and then restart Zotero to try againhttps://forums.zotero.org/discussion/70042/error-the-update-could-not-be-installed根据此文,如果是wind原创 2021-08-21 11:29:34 · 8905 阅读 · 10 评论 -
快速查找参考文献影响因子——ScholarScope
前言:最初看到的关于查看影响因子的插件有:pubmedy, pubmed plus 和 scholar scope.试了pubmedy,找到的版本没有用。PubMed 是一个提供生物医学方面的论文搜寻以及摘要,并且免费搜寻的数据库。它的数据库来源为MEDLINE。其核心主题为医学,但亦包括其他与医学相关的领域,像是护理学或者其他健康学科。随着PubMed的更新,插件也要及时更新,否则不可用获取最新版本插件的方法:scholarscope官网:https://www.scholarsco.原创 2021-08-16 12:30:24 · 5228 阅读 · 0 评论 -
文献整理软件——Zotero笔记
添加文献(如果是arxiv论文,打开他的arxiv界面,然后直接点浏览器插件即可。)找到一篇文献,先找他的标识号。然后点这个添加。怎么找标识号DOI如果引用里有doi:就是后面这一串10.1109/ICCVW.2019.00494. 注意要包括后面的名字之类。M. Jaritz, J. Gu and H. Su, “Multi-View PointNet for 3D Scene Understanding,” 2019 IEEE/CVF International Conference o原创 2021-08-15 20:10:58 · 3914 阅读 · 0 评论 -
[个人笔记]基于多组学数据的癌症分型相关资料学习
论文:基于多组学数据的癌症分型研究癌症分型:同一种癌症类型的患者表现形状不同,属于不同亚型。区分不同亚型,能提供个性化治疗方案,提高治愈率。组学数据:基因单碱基突变DNA 甲基化拷贝数变异mRNA 基因表达miRNA 基因表达…基本原理:绝大部分癌症是由基因突变驱动异常细胞生长引起的。常用方法:通过各种方式提取特征,再用k-means进行聚类。...原创 2021-04-09 11:16:06 · 1167 阅读 · 0 评论 -
[论文笔记][nature medicine]The consensus molecular subtypes of colorectal cancer
colorectal cancer (CRC)结肠直肠癌.consensus molecular subtypes (CMS) 共识分子亚型首先弄了六个独立的CRC分型算法。(用了不同的数据集和分析方法)。这样每个sample就有六个方法得到的六钟分型标签。六钟方法分别有5,6,3,3,5,5中分型,一共是27种。然后用了一个网络方法来分析6中分型算法的联系:上述27中分型作为图的节点,有权边的值是Jaccard similarity coefficients。 用一个Markov cluster (原创 2021-05-06 10:01:38 · 2315 阅读 · 1 评论