[算法总结] 约数 !

这篇博客探讨了数学中的约数、质因数分解和最大公约数的概念,并展示了如何利用O(√n + MlogM)的时间复杂度计算约数之和。文中通过代码实例解释了如何优化算法,避免暴力枚举,并介绍了如何从统计约数个数推导出约数之和的计算方法。同时,提到了一些常用的库函数如__gcd()用于计算最大公约数。
摘要由CSDN通过智能技术生成

吐槽:

好多定理啊

分解质因数

AcWing 872. 最大公约数

库函数

bits/stdc++.h
__gcd(a,b);

871. 约数之和(O√n +M log M)

细节:

因为ai的范围是 2e9+10

所以 如果使用 On的暴力枚举是必然超过的

借用@Bug-Free一张图

在这里插入图片描述

///若d > √n 是 N的约数
///则 N/d <= √n 也是N 的约数
///换言之 约数总是成对出现的(除了完全平方数)

因此因为这个关系

所以y总的代码就把时间复杂度改成O√n +M log M
(M表示的是 约数的个数)

Code:

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

vector<int> get_divisors(int x)
{
    vector<int> res;
    for (int i = 1; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res.push_back(i);
            if (i != x / i) res.push_back(x / i);
        }
        
    sort(res.begin(), res.end());
    return res;
}

int main()
{
    int n;
    cin >> n;

    while (n -- )
    {
        int x;
        cin >> x;
        auto res = get_divisors(x);

        for (auto x : res) cout << x << ' ';
        cout << endl;
    }

    return 0;
}

870. 约数个数

原理(感谢 @灰之魔女 ):

在这里插入图片描述

Code:

#include<iostream>
#include<algorithm>
#include<unordered_map>

using namespace std;

const int mod=1e9+7;

int main()
{
    int n;
    cin>>n;

    unordered_map<int,int> primes;//映射函数

    while(n--)
    {
        int x;
        scanf("%d",&x);

        for(int i=2;i<=x/i;i++)
        while(x%i==0)
        {
            primes[i]++;
            x/=i;//方便求得约数的数量
        }

        if(x>1) primes[x]++;//x的最大公约数可能大于sqrt(x);
    }

    long long res=1;
    for(auto p:primes) res=res*(p.second+1)%mod;//将统计出来的数按照由图中公式所得出来的结论得出答案

    printf("%lld\n",res);

    return 0;
}

AcWing 871. 约数之和(滚去当板子吧)

原理(真不敢兴趣)

在这里插入图片描述

Code:

#include <iostream>
#include <algorithm>
#include <unordered_map>
#include <vector>

using namespace std;

typedef long long LL;

const int N = 110, mod = 1e9 + 7;

int main()
{
    int n;
    cin >> n;

    unordered_map<int, int> primes;

    while (n -- )
    {
        int x;
        cin >> x;

        for (int i = 2; i <= x / i; i ++ )
            while (x % i == 0)
            {
                x /= i;
                primes[i] ++ ;
            }

        if (x > 1) primes[x] ++ ;
    }

    LL res = 1;
    for (auto p : primes)
    {
        LL a = p.first, b = p.second;
        LL t = 1;
        while (b -- ) t = (t * a + 1) % mod;
        res = res * t % mod;
    }

    cout << res << endl;

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值